Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Удалим из матрицы сберегательный счет и повторим процедуру. На этот раз мы рассмотрим только четыре рыночные системы (Toxico, Incubeast, LA Garb и NIC) и ограничим сумму весов числом 9. Мы должны поступить таким образом, потому что, как только в матрице появляется компонент с нулевой дисперсией и AHPR большим 1, мы получаем оптимальный портфель, состоящий из одного компонента, а для соответствия требуемому Е будет меняться только рычаг это­го компонента.

Решив матрицу, мы увидим, что уравнения с (7.06а) по (7.06г) удовлетворяют­ся при Е, равном 0,2457. Так как это геометрический оптимальный портфель, V также равно 0,2457. Получившееся среднее геометрическое равно 1,142833. Порт­фель будет выглядеть следующим образом:

Toxico 102,5982%

Incubeast 49,00558%

LA Garb 40,24979%

NIC 708,14643%

Возникает резонный вопрос: «Каким образом сумма весов компонентов может быть больше 100%?» Мы ответим на этот вопрос, но несколько позже.

Если NIC не является одним из компонентов геометрического оптималь­ного портфеля, то следует поднять ограничение суммы весов S до уровня, ког­да NIC станет одним из компонентов геометрического оптимального портфе­ля. Вспомните, что если в портфеле есть только два компонента, причем ко­эффициент корреляции между ними равен -1 и оба компонента имеют поло­жительное математическое ожидание, тогда от вас потребуется финансирова­ние бесконечного числа контрактов, поскольку такой портфель никогда не будет проигрывать. Следует также отметить, что чем ниже коэффициенты корреляции между компонентами в портфеле, тем выше процент, требуемый для инвестирования в эти компоненты. Разность между инвестированными процентными долями и ограничением суммы весов S должна быть заполнена NIC. Если NIC отсутствует среди компонентов геометрического оптимально­го портфеля, значит портфель работает при ограниченном S и поэтому не мо­жет считаться неограниченным геометрическим оптимальным портфелем. Так как вы не будете в действительности инвестировать в NIC, то не имеет значения, каков его вес, пока он является частью геометрического оптималь­ного портфеля.


Оптимальное f и оптимальные портфели

Из главы 6 мы узнали, что для каждого компонента портфеля необходимо опре­делить ожидаемую прибыль (в процентах) и ожидаемую дисперсию прибылей. В общем случае, ожидаемые прибыли (и дисперсии) рассчитываются на основе текущей цены акции. Затем для каждого компонента определяется его опти­мальный процент (вес). Далее, для расчета суммы инвестиций в тот или иной компонент, баланс на счете умножается на вес компонента, и затем для опреде­ления количества акций для покупки эта сумма в долларах делится на текущую цену одной акции.

Так в общих чертах можно описать современную стратегию создания порт­феля. Но это не совсем оптимальный вариант, и в этом состоит одна из основ­ных идей книги. Вместо определения ожидаемой прибыли и дисперсии прибы­ли на основе текущей цены компонента, ожидаемая прибыль и дисперсия при­былей для каждого компонента должны определяться на основе долларового оптимального f. Другими словами, в качестве входных данных вы должны ис­пользовать арифметическое среднее HPR и дисперсию HPR. Используемые HPR должны быть привязаны не к количеству сделок, а к фиксированным ин­тервалам времени (дни, недели, месяцы, кварталы или годы), как в главе 1 для уравнения (1.15).

где А = сумма в долларах, выигранная или проигранная в этот день;

В = оптимальное f в долларах.

Не обязательно использовать дневные данные, можно использовать любой вре­менной период, при условии, что он одинаковый для всех компонентов портфеля (тот же временной период должен использоваться для определения коэффициен­тов корреляции между HPR различных компонентов). Скажем, рыночная систе­ма с оптимальным f= 2000 долларов за день заработала 100 долларов. Тогда для такой рыночной системы дневное HPR = 1,05.

Если вы рассчитываете оптимальное f на основе приведенных данных, то для получения дневных HPR следует использовать уравнение (2.12);

где D$ = изменение цены 1 единицы в долларах по сравнению с прошлым днем, т.е. (закрытие сегодня - закрытие вчера) * доллары за пункт;

f$ = текущее оптимальное f в долларах, рассчитанное из уравнения (2.11). Здесь текущей ценой является зак­рытие последнего дня.

После того как вы определите оптимальное f в долларах для 1 единицы компонен­та, надо взять дневные изменения баланса на основе 1 единицы и преобразовать их в HPR с помощью уравнения (1.15). Если вы используете приведенные дан­ные, воспользуйтесь уравнением (2.12). Когда вы комбинируете рыночные систе­мы в портфеле, все они должны иметь одинаковый формат, т.е. если данные при­ведены к текущим ценам, то оптимальные f и побочные продукты также должны быть приведенными.

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература