Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

При решении уравнений с (7.06а) по (7.06г) необходимо использовать метод ите­раций, т.е. выбирать тестируемое значение для Е и решать матрицу для этого Е. Если полученное значение дисперсии больше значения Е, это означает, что тес­тируемое значение Е слишком высокое и в следующей попытке следует его пони­зить. Вы можете определить дисперсию портфеля, используя одно из уравнений с (6.06а) по (6.06г). Повторяйте процесс, пока не будет выполняться любое из ра­венств с (7.06а) по (7.06г). Таким образом вы получите геометрический оптималь­ный портфель (отметьте, что все рассмотренные портфели на эффективной гра­нице AHPR или на эффективной границе GHPR определяются с учетом того, что сумма весов равна 100%, или 1,00). Вспомните уравнение (6.10), используемое в первоначальной расширенной матрице для поиска оптимальных весов портфеля, уравнение отражает тот факт, что сумма весов равна 1:

где N = количество ценных бумаг, составляющих портфель;

X. = процентный вес ценной бумаги L Уравнение также можно представить следующим образом:

Мы можем найти неограниченный оптимальный портфель, если левую часть этого уравнения приравнять к числу больше 1. Для этого добавим еще одну рыночную систему, называемую беспроцентным вкладом (non-interest-bearing cash (NIC)), в первоначальную расширенную матрицу Данная рыночная система будет иметь дневное среднее арифметическое HPR= 1,0, а стандартное отклонение, диспер­сию и ковариацию дневных HPR равными 0. Коэффициенты корреляции NIC с любой другой рыночной системой всегда равны 0.

Теперь установим ограничение суммы весов на некоторое произвольное чис­ло, большее единицы. Хорошим первоначальным значением будет количество используемых рыночных систем (без NIC), умноженное на три. Так как мы имеем 4 рыночные системы (не учитывая NIC), то ограничим сумму весов 4*3=12.

Отметьте, что мы просто устанавливаем ограничение на произвольное значе­ние, большее единицы. Разность между этим выбранным значением и суммой полученных весов будет весом системы NIC.

На самом деле, мы не собираемся инвестировать в NIC. Это просто дополни­тельная переменная, с помощью которой мы создадим матрицу для получения

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

Ковариации рыночных систем, включая NIC, будут следующими:

Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

ИнвестицияОжидаемая прибыль в виде HPRОжидаемое стандартное отклонение прибыли
Toxico1,0950,316227766
Incubeast Corp.1,130,5
LA Garb1,210,632455532
Сберегательный счет1,0850
Беспроцентный вклад1,000


Ковариации рыночных систем, включая NIC, будут следующими:

ТILSN
Т0,1-0,02370,0100
I-0,02370,250,07900
L0,010,0790,400
S00000
N00000


Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

После включения NIC первоначальная расширенная матрица приобретет вид:

Отметьте, что значение на пересечении столбца ответов и второй строки, т.е. огра­ничение суммы весов, равно количеству рыночных систем (не включая NIC), ум­ноженному на 3. С помощью элементарных преобразований, описанных в главе 6, получим еди­ничную матрицу. Теперь вы можете определить эффективную границу AHPR и эф­фективную границу GHPR для портфеля с неограниченными весами. Эффективная граница AHPR для портфеля с неограниченными весами соответствует использова­нию рычага (заемного капитала) без реинвестирования.

Эффективная граница GHPR соответствует использованию рычага и реин­вестированию прибылей. Наша цель — найти оптимальный неограниченный геометрический портфель, который в результате даст наибольший геометричес­кий рост. Можно использовать уравнения с (7.Оба) по (7.06г) для нахождения на эффективной границе геометрического оптимального портфеля. В нашем слу­чае, независимо от того, какое значение мы пытаемся найти для Е (значение на пересечение столбца ответов и первой строки), мы получаем один и тот же пор­тфель, состоящий только из сберегательного счета, поднятого рычагом для дос­тижения желаемого значения Е. В этом случае мы получаем самое низкое V (т. е. 0) для любого Е.

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература