Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

где f = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

В = отношение выигранной суммы по выигрышной ставке к про­игранной сумме по проигрышной ставке;

1n() = функция натурального логарифма.


Оказывается, что для систем с двумя возможными исходами это оптимальное f можно довольно легко найти с помощью формул Келли.

Формулы Келли


Начиная с конца 1940-х годов, инженеры компании Bell System работали над про­блемой передачи данных по международным линиям. Проблема, стоящая перед ними, заключалась в том, что линии были подвержены случайному, неизбежному «шуму», который мешал передаче данных. Инженерами компании было предло­жено несколько довольно оригинальных решений. Как это ни странно, наблюда­лись большие сходства между проблемой передачи данных и проблемой геомет­рического роста, которая относится к управлению деньгами в азартных играх (так как обе проблемы являются продуктом случайной среды). Так появилась первая формула Келли.

Первое уравнение выглядит следующим образом:

или

(1.09б) f=P-Q,

где f = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

Q = вероятность проигрыша (1 - Р).

Обе формы уравнения (1.09) эквивалентны.

Уравнения (1.09а) или (1.096) для оптимального f дадут правильный ответ при условии, что выигрыши и проигрыши будут одинаковые по величине. В ка­честве примера рассмотрим следующий поток ставок:

Есть 10 ставок, 6 из них выигрышных, отсюда:

f=(0,6*2)-l =1,2-1=0,2

Если выигрыши и проигрыши не были бы одинакового размера, то эта формула не дала бы правильного ответа. Примером служит бросок монеты в игре «два к одному», где все выигрыши — 2 единицы, а проигрыши — 1 единица.В этом слу­чае формула Келли будет выглядеть следующим образом:

где t = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

В = отношение выигранной суммы по выигрышной ставке к проигран­ной сумме по проигрышной ставке.

В нашем примере с броском монеты в игре «два к одному»:

f=((2+l)*0,5-1)/2 =(3*0,5-1)/2 =0,5/2 = 0,25

Эта формула даст правильный ответ для оптимального f при условии, что все вы­игрыши между собой всегда одинаковы и все проигрыши между собой всегда оди­наковы. Если это не так, формула не даст правильного ответа.

Формулы Келли применимы только к результатам, которые имеют распре­деление Бернулли (распределение с двумя возможными исходами). Торговля, к сожалению, не так проста. Применение формул Келли к иному распределе­нию является ошибкой и не даст нам оптимального f. Более подробно о распреде­лении Бернулли рассказано в приложении В.


Поиск оптимального f с помощью среднего геометрического.


В реальной торговле размер проигрышей и выигрышей будут постоянно меняться. Поэтому формулы Келли не могут дать нам правильное оптимальное f. Как корректно с математической точки зрения найти оптимальное f, которое по­зволит нам определить количество контрактов для торговли? Попытаемся ответить на этот вопрос. Для начала мы должны изменить формулу для поиска HPR, включив в нее f:

где -Сделка= прибыль или убыток в этой сделке (с проти­воположным знаком, чтобы убыток стал по­ложительным числом, а прибыль — отрица­тельным);

Наибольший проигрыш = наибольший убыток за сделку (это всегда отрица­тельное число).

TWR — это произведение всех HPR, а среднее геометрическое (G) — это корень N-й степени TWR.

где - Сделкаi = прибыль или убыток по сделке i (с противо­положным знаком, чтобы убыток был поло­жительным числом, а прибыль — отрицательным);

Наибольший проигрыш = результат сделки, которая дала наиболь­ший убыток (это всегда должно быть от­рицательное число);

N = общее количество сделок;

G = среднее геометрическое HPR.

Просмотрев значения/от 0,01 до 1, мы найдем/, которое даст наивысшее TWR. Это значение f позволит получить максимальную прибыль при торговле фикси­рованной долей. Мы можем также сказать, что оптимальное f позволяет получить наивысшее среднее геометрическое. Не имеет значения, что мы ищем: наивыс­шее TWR или среднее геометрическое, так как обе величины максимальны при одном и том же значении f.

Описанную выше процедуру достаточно легко осуществить с помощью компьютера, перебирая f от 0,01 до 1,00. Как только вы получите TWR, которое меньше предыдущего, то знайте, что f, относящееся к предыдущему TWR, является оптимальным f, поскольку графики TWR и среднего геометрического име­ют один пик. Чтобы облегчить процесс поиска оптимального f диапазоне от 0 до 1, можно использовать разные алгоритмы. Один из самых быстрых способов расчета оптимального f — это метод параболической интерполяции, который детально описан в книге «Формулы управления портфелем».

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература