Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Проблему наилучшего выбора ограничительных параметров можно сфор­мулировать в виде вопроса: где могут произойти в будущем наилучшие и наи­худшие сделки (когда мы будем торговать в этой рыночной системе)? Хвосты распределения в действительности стремятся к плюс и минус бесконечности, и нам следует финансировать каждый контракт на бесконечно большую сум­му (как в последнем примере, где мы раздвигали обе границы). Конечно, если мы собираемся торговать бесконечно долгое время, наше оптимальное f в долларах будет бесконечно большим. Но мы не собираемся торговать в этой рыночной системе вечно. Оптимальное f, при котором мы собираемся торговать в этой рыночной системе, является функцией предполагаемых наилучших и наи­худших сделок. Вспомните, если мы бросим монету 100 раз и запишем, какой будет самая длинная полоса решек подряд, а затем бросим монету еще 100 раз, то полоса ре­шек после 200 бросков будет скорее всего больше, чем после 100 бросков. Таким же образом, если проигрыш наихудшего случая за нашу историю 232 сделок равнялся 2,96 сигма (для удобства возьмем 3 сигма), тогда в будущем мы должны ожидать проигрыш больше 3 сигма. Поэтому вместо того, чтобы ограничить наше распределение прошлой историей сделок (-2,96 и +6,94 сигма), мы огра­ничим его -4 и +6,94 сигма. Нам, вероятно, следует ожидать, что в будущем именно верхняя, а не нижняя граница будет нарушена. Однако это обстоятель­ство мы не будем принимать в расчет по нескольким причинам. Первая состоит в том, что торговые системы в будущем ухудшают свою результативность по сравнению с работой на исторических данных, даже если они не используют оп­тимизируемых параметров. Все сводится к принципу, что эффективность меха­нических торговых систем постепенно снижается. Во-вторых, тот факт, что мы платим меньшую цену за ошибку в оптимальном f при смещении влево, а не вправо от пика кривой f, предполагает, что следует быть более консервативными в прогнозах на будущее. Мы будем рассчитывать параметрическое оптимальное f при ограничи­тельных параметрах -4 и +6,94 сигма, используя 300 равноотстоящих точек данных. Однако при расчете вероятностей для каждой из 300 равноотстоя­щих ячеек данных важно, чтобы мы рассмотрели распределение на 2 сигмы до и после выбранных ограничительных параметров. Поэтому мы будем оп­ределять ассоциированные вероятности, используя ячейки в интервале от -6 до +8,94 сигма, даже если реальный интервал -4 — +6,94 сигма. Таким образом, мы увеличим точность результатов. Использование оптимальных параметров 0,02, 2,76, 0 и 1,78 теперь даст нам оптимальное f =0,837, или 1 контракт на каждые 7936,41 доллара. Пока ограничительные параметры не нарушаются, наша модель точна для выбранных границ. Пока мы не ожидаем проигрыша больше 4 сигма ($330,13 -(1743,23 * 4) =-$6642,79) или прибыли больше 6,94 сигма ($330,13 + + (1743,23 * 6,94) = $12 428,15), можно считать, что границы распределения бу­дущих сделок выбраны точно. Возможное расхождение между созданной моделью и реальным распределе­нием является слабым местом такого подхода, то есть оптимальное f, полученное из модели, не обязательно будет оптимальным. Если наши выбранные параметры будут нарушены в будущем, f может перестать быть оптимальным. Этот недоста­ток можно устранить с помощью опционов, которые позволяют ограничить воз­можный проигрыш заданной суммой. Коль скоро мы обсуждаем слабость данного метода, необходимо указать на последний его недостаток. Следует иметь в виду, что реальное распределение торговых прибылей и убытков является распределением, где параметры по­стоянно изменяются, хотя и медленно. Следует периодически повторять на­стройку по торговым прибылям и убыткам рыночной системы, чтобы отслежи­вать эту динамику.


Проведение тестов «что если»


После того как найдено параметрическое оптимальное f, можно реализовывать сценарии «что если» с помощью полученной функции распределения. Для этого нужно варьировать параметры функции распределения LOC, SCALE, SKEW и KURT для моделирования различных ожидаемых результатов (различных рас­пределений, которые могут быть в будущем). Мы знаем, как применять проце­дуру растяжения и сжатия в нормальном распределении, и похожим образом можем работать с параметрами LOC, SCALE, SKEW и KURT регулируемого распределения.

Рисунок 4-12 Изменение параметра расположения распределения

Сценарии «что если» при параметрическом подходе помогают смоделировать из­менения фактического распределения торговых P&L. Параметрические методы позволяют увидеть воздействие изменений на распределение фактических торго­вых прибылей и убытков до того, как они произойдут.

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература