Читаем Матвей Петрович Бронштейн полностью

Четырехмерная совокупность «событий», рассматриваемая в теории относительности Эйнштейна и введенная впервые в эту теорию знаменитым математиком Германом Минковским, представляет полную аналогию с железнодорожным графиком, с той лишь только разницей, что эта четырехмерная совокупность по вполне понятным причинам не может быть изображена графически. Изучающий теорию относительности должен мыслить таким образом, что вместо движения материальной точки в трехмерном пространстве по некоторому пути он сразу представляет себе линию, являющуюся графиком движения этой материальной точки в четырехмерной «диаграмме» Эйнштейна. Подобные представления о четырехмерной совокупности «событий» были развиты Минковским и Эйнштейном уже для «специальной теории относительности», в которой явления тяготения еще не рассматривались. Когда Эйнштейн начал работать над созданием новой теории тяготения (в 1912 г.), ему пришлось ввести новое большое усложнение. Этим усложнением было введение неевклидовой геометрии.

Рассмотрим вкратце, в чем здесь дело, и будем для простоты рассматривать снова не четырехмерную совокупность точек, с которой приходится иметь дело в теории Эйнштейна, а двухмерную, которую возможно изобразить на листе бумаги. Проведем снова две взаимно перпендикулярные оси координат и рассмотрим две точки 1 и 2 на этой диаграмме (рис. 2). Расстояние между точками 1 и 2 можно вычислить с помощью теоремы Пифагора, если даны так называемые «проекции отрезка 1 2 на координатные оси», т. е. катеты прямоугольного треугольника 12 3, проведенные параллельно координатным осям. Квадрат длины отрезка 1 2 равен сумме квадратов его проекций 1 3 и 2 3. Теорема Пифагора даст возможность вычислять длину также и любой кривой линии, проведенной на диаграмме. Для этого нужно разбить кривую линию на ряд таких мелких частей, что каждая из этих частей может приближенно рассматриваться как отрезок прямой линии (бесконечно малая дуга может быть заменена своей хордой). Вычислив длину каждого бесконечно малого отрезка прямой линии, равную квадратному корню из суммы квадратов проекций этого отрезка, мы можем сложить полученные результаты и найти таким образом длину всей кривой линии. Такое вычисление длины кривой, опирающееся на теорему Пифагора, является необходимым следствием геометрии Евклида.

Неевклидова геометрия, начало созданию которой положили сто лет тому назад Лобачевский, Гаусс и Болиаи и которая была приведена в более совершенную форму гениальным немецким математиком Берн-хардом Риманом, представляет непосредственно обобщение геометрии Евклида. Вместо того чтобы вычислять квадратный корень из суммы квадратов проекций бесконечно малого отрезка, как это делается в геометрии Евклида, неевклидова геометрия вычисляет квадратный корень из более сложного выражения, являющегося суммой не только квадратов бесконечно малых проекций, но и произведения этих проекций, причем в этой сумме каждый квадрат и произведение предварительно умножается на некоторый коэффициент. Таким образом, евклидова геометрия является тем частным случаем неевклидовой геометрии, который получится, если коэффициенты при квадратах проекций равны единице, а коэффициенты при произведении равны нулю. В неевклидовой же геометрии эти коэффициенты могут принимать различные значения в разных точках пространства. Легко видеть, что если даны значения этих коэффициентов во всех точках пространства (или, как сказал бы физик, задано «поле» этих коэффициентов), то возможно вычислить длину любой кривой линии, проведенной в этом неевклидовом пространстве. Все другие геометрические величины (углы, площади, объемы и т. д.) также возможно вычислить с помощью тех же коэффициентов, которые, таким образом, приобретают первостепенное значение для геометрических свойств неевклидова пространства. Ими, как говорят, определяется «метрика» пространства, т. е. результаты всех производимых в нем измерений. Коэффициенты эти получили довольно громоздкое название «компонентов метрического фундаментального тензора». Понятно, что вся суть заключается именно в этих компонентах. Если между двумя точками проведены две кривые линии, то, например, вопрос о том, которая из них короче, может быть решен только в том случае, если заданы значения компонентов метрического фундаментального тензора в каждой точке. Линия, которая не оказалась бы кратчайшим расстоянием между двумя точками в пространстве евклидовом, где все компоненты метрического фундаментального тензора равны или нулю или единице, может оказаться кратчайшей линией, если задано какое-нибудь другое распределение этих компонентов в пространстве, соответствующее неевклидовой геометрии.

Перейти на страницу:

Все книги серии Научно-биографическая литература

Похожие книги

Афганистан. Честь имею!
Афганистан. Честь имею!

Новая книга доктора технических и кандидата военных наук полковника С.В.Баленко посвящена судьбам легендарных воинов — героев спецназа ГРУ.Одной из важных вех в истории спецназа ГРУ стала Афганская война, которая унесла жизни многих тысяч советских солдат. Отряды спецназовцев самоотверженно действовали в тылу врага, осуществляли разведку, в случае необходимости уничтожали командные пункты, ракетные установки, нарушали связь и энергоснабжение, разрушали транспортные коммуникации противника — выполняли самые сложные и опасные задания советского командования. Вначале это были отдельные отряды, а ближе к концу войны их объединили в две бригады, которые для конспирации назывались отдельными мотострелковыми батальонами.В этой книге рассказано о героях‑спецназовцах, которым не суждено было живыми вернуться на Родину. Но на ее страницах они предстают перед нами как живые. Мы можем всмотреться в их лица, прочесть письма, которые они писали родным, узнать о беспримерных подвигах, которые они совершили во имя своего воинского долга перед Родиной…

Сергей Викторович Баленко

Биографии и Мемуары
Николай II
Николай II

«Я начал читать… Это был шок: вся чудовищная ночь 17 июля, расстрел, двухдневная возня с трупами были обстоятельно и бесстрастно изложены… Апокалипсис, записанный очевидцем! Документ не был подписан, но одна из машинописных копий была выправлена от руки. И в конце документа (также от руки) был приписан страшный адрес – место могилы, где после расстрела были тайно захоронены трупы Царской Семьи…»Уникальное художественно-историческое исследование жизни последнего русского царя основано на редких, ранее не публиковавшихся архивных документах. В книгу вошли отрывки из дневников Николая и членов его семьи, переписка царя и царицы, доклады министров и военачальников, дипломатическая почта и донесения разведки. Последние месяцы жизни царской семьи и обстоятельства ее гибели расписаны по дням, а ночь убийства – почти поминутно. Досконально прослежены судьбы участников трагедии: родственников царя, его свиты, тех, кто отдал приказ об убийстве, и непосредственных исполнителей.

А Ф Кони , Марк Ферро , Сергей Львович Фирсов , Эдвард Радзинский , Эдвард Станиславович Радзинский , Элизабет Хереш

Биографии и Мемуары / Публицистика / История / Проза / Историческая проза