Теория Эйнштейна, о которой идет речь в этой заметке, ставит перед собой такую же самую цель — включение электромагнитного поля в систему чисто геометрических величин. Для того чтобы понять новую теорию Эйнштейна, названную им «единой теорией поля», нужно рассмотреть понятие о параллелизме в неевклидовой геометрии. Пусть в неевклидовом пространстве дана точка 1
и в ней задано некоторое направление (например, направление некоторого бесконечно малого отрезка, начинающегося в точке 1). Пусть через точку 2 того же неевклидового пространства требуется провести отрезок, параллельный заданному бесконечно малому отрезку в точке 1. Простейшим способом является следующий. Соединим точки 1 и 2 геодезической (кратчайшей) линией и будем перемещать вдоль этой линии бесконечно малый отрезок из точки 1 в точку 2 так, чтобы при каждом бесконечно малом перемещении, на которые можно разложить его путь от точки 1 к точке 2, он оставался параллелен самому себе. Ясно, что, придя в точку 2, он будет находиться под тем же углом к касательной, проведенной к геодезической линии, под которым он находился в точке 1. На первый взгляд может казаться, что то положение, которое отрезок принял в точке 2, можно считать параллельным его первоначальному направлению в точке 1. Однако с этим связаны трудности. Если, например, дана, кроме точек 1 и 2, еще и точка 3, то можно было бы переместить бесконечно малый отрезок параллельно самому себе сперва из точки 1 к точке 3 по соединяющей их геодезической линии, а затем из точки 3 к точке 2 по геодезической линии 3 2. Окажется, что после двух таких перемещений бесконечно малый отрезок будет занимать в точке 2 не то положение, какое он имел бы при непосредственном перемещении параллельно самому себе по геодезической линии 1 2, а другое.Таким образом, понятие параллелизма не может быть обобщено на пространство, обладающее кривизной. Это можно проверить на простом случае шаровой поверхности, которую можно рассматривать, как двумерное неевклидово пространство. Пусть на поверхности шара даны три точки 1, 2
и 3. Соединим их попарно дугами больших кругов (известно, что на поверхности шара дуга большого круга, соединяющая две точки, является кратчайшим расстоянием между ними). Получился сферический треугольник 123. Если в точке 1 проведен какой-нибудь отрезок в касательной плоскости к шару, то его можно переместить вдоль стороны сферического треугольника 1 2 таким образом, чтобы он все время оставался касателен к шару и все время образовывал один и тот же угол с касательной к большому кругу 1 2. Это и будет «перемещение параллельно самому себе» по геодезической линии 1 2. После этого его можно таким же образом «перенести параллельно самому себе» по геодезической линии 2 3, а затем и по линии 3 1. Окажется, что после такого «перемещения параллельно самому себе» по контуру сферического треугольника 123 отрезок не придет в прежнее положение, а образует со своим первоначальным направлением в точке 1 некоторый угол. С помощью элементарной геометрии нетрудно доказать, что этот угол будет равен так называемому « сферическому эксцессу» треугольника 1 2 3, т. е. разности между суммой углов сферического треугольника 1 2 3 и 180 градусами. (Сферический эксцесс треугольника, как доказывается в сферической тригонометрии, пропорционален площади треугольника.) Из этого примера видно, что сохранить на поверхности шара понятие о параллелизме без добавочных условий невозможно.