Читаем Мечта Эйнштейна. В поисках единой теории строения полностью

Как ни странно, Эйнштейн так и не нашёл решения своих уравнений. Он показал, что в пределе они сводятся к уравнениям Ньютона, сделал на их основе ряд предсказаний, но так и не смог их решить. И всё же через несколько месяцев после опубликования теории решения были найдены.

Зимой 1915-1916 годов, когда первая мировая война была в самом разгаре, о теории Эйнштейна узнал немецкий астроном Карл Шварцшильд. Против ожидания, познакомился он с теорией не в университете и не в тиши своего кабинета. Несмотря на академическое звание и возраст (ему было за сорок), он пошёл на войну добровольцем и был отправлен на русский фронт. Не прошло и нескольких месяцев, как его подкосила редкая болезнь, и с работой Эйнштейна он познакомился на смертном одре. Несмотря на болезнь, ему удалось найти решение для сферического распределения масс, которое он послал Эйнштейну.

Эйнштейна удивило и обрадовало то, что его уравнения были решены так быстро. На очередном заседании Прусской академии наук он доложил результаты Шварцшильда. То, что решение найдено, радовало Эйнштейна, хотя сам характер этого решения его беспокоил. Получалось, что при достаточно высокой концентрации масс происходит нечто странное – пространство искривляется так сильно, что вся область внутри поверхности определённого радиуса оказывается отрезанной от остальной Вселенной. Эйнштейну это не нравилось, и он много лет безуспешно пытался доказать, что в реальном мире такая возможность физически не реализуется.

Гораздо позже, подробно анализируя эту предельную искривлённость пространства, Эйнштейн обнаружил нечто ещё более странное – по мере приближения к веществу большой плотности пространство изгибается всё сильнее и становится похоже на бутылочное горлышко или воронку. Эта воронка не заканчивается на веществе; из уравнений следует, что по другую сторону имеется её зеркальное отражение. По сути, получается что-то вроде туннеля в пространстве, который сначала сужается, а потом начинает расширяться. Эйнштейн задался вопросом: куда ведёт этот туннель (или, как он его называл, «пространственно-временной мостик»)? Он пришёл к выводу, что мостик может вести только в «Другую Вселенную», хотя непонятно, что это такое. Полученный результат не понравился Эйнштейну, ведь из него следовало, что кто-то может попасть в туннель с одной стороны и появиться в «другой Вселенной». К его облегчению, дальнейшие расчёты показали, что для прохождения сквозь туннель потребуются скорости, большие световой, что согласно специальной теории относительности невозможно.

<p>Глава 3</p><empty-line></empty-line><p>Ранние единые теории поля</p>

Вскоре после создания (1905 год) специальная теория относительности перестала устраивать Эйнштейна, и он начал работать над её обобщением. То же произошло и с общей теорией относительности. В ней возник ряд проблем, связанных с уравнением поля. Давайте и мы начнём с этого уравнения. Не пугайтесь, я не буду подробно его записывать, а только рассмотрю упрощённый вариант, о котором рассказал нам на первом курсе один из преподавателей. Взглянув на испуганные лица, он на первой же лекции утешил нас, сказав, что математика по сути очень проста. «Все уравнения в конечном счёте, – сказал он, – сводятся к виду A = B». Не знаю как студентам, а нам с вами, читатели, это заявление очень кстати, так как оно полностью относится и к уравнению Эйнштейна, хотя A и B там немного (по правде говоря, гораздо) сложнее, чем в большинстве других уравнений. И слева и справа стоят математические величины, о которых я уже упоминал раньше, – это тензоры.

Предельно упрощая, уравнение Эйнштейна можно записать в виде: тензор A = тензор B, где тензор A описывает кривизну пространства, а тензор B – материю, которая вызывает это искривление. На практике B может также содержать члены, описывающие электромагнитное поле, так как это поле есть проявление энергии, а энергия – одна из форм массы.

Эйнштейна не устраивал главным образом тензор B. В автобиографии он писал: «Правая часть включает в себя всё то, что не может быть пока объединено в единой теории поля. Конечно, я ни минуты не сомневался в том, что такая формулировка есть только временный выход из положения». Он ввёл этот тензор, чтобы уравнение имело законченный вид и можно было проводить расчёты, но был убеждён, что в дальнейшем форма уравнения изменится. Он много раз говорил: «Левая часть – это дворец из мрамора, а правая – хижина из дерева и бумаги».

Вся беда в том, что правая часть относится не к полю; эта часть описывает материю. Отсюда следует, что уравнение в целом не является чисто полевым. Оно «скомпрометировано» наличием материи, что вызывало у Эйнштейна отвращение – по его мнению, уравнение должно было быть чисто полевым.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука