Эта проблема подробно описана в единственной книге, посвященной по управлению капиталом, на русском языке
«Для данной рыночной системы существует оптимальное количество, которое можно использовать в торговле при данном уровне баланса счета, чтобы максимизировать геометрический рост».
Книгу Винса не так-то просто читать. В ней много формул и математики. Постараюсь объяснить ее главную идею, практически не прибегая к материалам Винса.
Сформулируем вопрос № 2
: какую долю рискового капитала надо ставить в сделке, чтобы максимизировать геометрический рост депозита?На данный вопрос ответ придумал американский математик Джон Келли еще в 1956 г. Формула Келли помогает нам найти ту долю рискового капитала, которой надо рисковать, при условии, что известны параметры PP, AP, AL.
Kelly% = PP – [(1 – PP)/(AP/AL)]83
.Формула Келли считает долю капитала (англ. fraction), поэтому ее принято обозначать F. Оптимальную долю счета для совершения сделки, рассчитанную через критерий Келли, мы обозначим как F*.
Поскольку мы используем AP=AL, то
F* = PP – LP = 60 % – 40 % = 20 %.
Получается, что для нашего примера оптимальная стратегия заключается в том, чтобы рисковать в каждой сделке не менее чем 20 % рискового капитала.
Тем не менее существует одна большая оговорка. Формула Келли применима только лишь в том случае, когда наши тейк-профиты и стоп-лоссы всегда одни и те же, а вероятность PP постоянна. На языке математиков это означает, что результаты сделок имеют распределение Бернулли. Следовательно, все дальнейшие рассуждения математически справедливы, только если в вашей системе тейк-профит и стоп-лосс всегда одинаковы. В реальной торговле это редко встречается, но мы воспользуемся данным допущением, чтобы не усложнять общую картину.
В первой сделке, взяв счет $500, мы рискуем $100. Но если в результате мы получим убыток, то в следующей сделке на счету у нас будет $400 и нам следует открыть сделку с риском лишь $8084
. Чтобы сполна оценить разницу между двумя подходами, загрузите подготовленное моделирование в Excel85: нажимайте кнопку Delete на пустой ячейке таблицы с целью сгенерировать новые случайные кривые.Приведу несколько примеров полученных случайных моделей для нашей системы (PP = 60 %, AP = AL) при постоянной ставке и при использовании критерия Келли.
Рис. 65.
Случайное моделирование № 1–1 (рис. 65). Система начинает не очень удачно – не повезло. Видно, что в этом случае использование оптимального F не «убило счет» к 50-й сделке, но очень долго выводило его из просадки. Здесь мы видим, что использование оптимальной доли может надолго выбить систему из колеи. Если бы мы взяли начальный счет не $500, а $1400, как я рекомендовал выше, то система с постоянным количеством не слила бы счет и по итогам 200 сделок. Она показала бы лучший результат, чем система, использующая критерий Келли.
Рис. 66.
Случайное моделирование № 1–2 (рис. 66). В данном случае система Келли показала себя хорошо. По итогам 200 сделок на этом удачном «сэмпле» одна и та же система продемонстрировала результат, который отличается более чем в 20 раз при условии разных методов управления позицией.
Рис. 67.
Случайное моделирование № 1–3 (рис. 67). Здесь мы видим: если система «буксует», то торговля с оптимальным F быстро отдает много денег, в то время как постоянное количество показывает более гладкую кривую капитала.
На основании только визуальной оценки моделирования можно грубо сравнить два подхода:
В идеальном мире, где количество сделок неограниченно, системы бесконечно масштабируются, использование критерия Келли при определении количества торгуемых контрактов в конечном счете выиграет у метода с постоянным количеством. В реальном мире любая недооценка рисков и переоценка положительного матожидания приведет к переоценке реального оптимального количества и в итоге из-за погрешности в управлении капиталом вы получите убыточную систему!