Часто ошибочно говорят, что Эйнштейн с помощью той работы продолжил развивать идеи Планка. Это неправильно, поскольку здесь Эйнштейн вообще не использовал работы Планка.
186
Конкретнее, он говорил: «Определенный вид движения, или быстрое и живое действие, которое передается нашим глазам через толщу воздуха и других прозрачных тел, подобно тому, как движение или сопротивление тел, с которыми сталкивается человек, передается его рукам посредством палки».
187
Точная хронология экспериментов Ньютона по оптике немного запутана. Тем не менее, вероятнее всего, Ньютон начал свою работу по оптике около 1666 года, расширяя первоначальные исследования, и прояснил свою теорию в 1669. Хотя к 1670 году его теория была полностью разработана, свои изначальные взгляды он опубликовал только в статье 1672 года.
188
Звук с тоном ниже – то есть звуковая волна большей длиной волны (меньшей частоты) – будет дифрагировать (или огибать) объект в большей степени, чем волна с тоном выше (звуковая волна меньшей длины, то есть большей частоты). Это означает, что звук с тоном ниже легче услышать около предмета, который может находиться перед источником, чем звук с более высоким тоном.
189
В 1862 году Фуко измерениями получил значение скорости света 299 796 км/с, что хорошо согласуется с современным значением – 299 792,458 км/с.
190
Данная картина немного упрощена. Отдельный электрон испытывает притяжение со стороны всех близких атомов, а не просто со стороны одного атома.
191
Планк намеренно сохранял описание своих резонаторов нечетким и использовал его для своего удобства в своей работе над квантовой теории света и вещества.
192
Импульс света (как волны) можно получить из уравнений Максвелла, которые также покажут, что он равен энергии света, разделенной на скорость его распространения. Наконец, тот же самый результат получают из соотношения между энергией и импульсом в рамках специальной теории относительности, поскольку масса покоя фотона равна нулю.
193
Эйнштейн также нуждался в ясном понимании импульса фотона, чтобы c легкостью продолжить расчет числа микросостояний. В 1905 году у Эйнштейна должно было быть (во всяком случае, не могу себе представить, что его не было) четкое представление об импульсе фотона. Если оно и было, он не сообщил о нем сразу же. На самом деле, первым импульс фотона упомянул Йоханнес Штарк в 1909 году, в том же самом году (как мы обсуждали выше), когда Эйнштейн показал, что у флуктуации импульса света есть корпускулярная и волновая составляющие. Без сомнений, к 1909 году Эйнштейн, должно быть, очень хорошо был знаком с импульсом фотона. Но продолжал молчал. И так было до 1917 года, когда Эйнштейн реально об этом заговорил.
194
Однако, как мы обсуждали ранее, он уже определил число микросостояний с помощью своего предыдущего подхода.
195
Бозе прямо использовал импульс фотона (
196
В своем труде 1905 года Эйнштейн как раз предположил, что фотоны (световые кванты) сохраняются. Это предположение проникает в вывод Эйнштейна, когда он приравнивает энтропию идеального газа к энтропии света, что (как мы помним) приводит к выражению
197
Тем не менее, Бозе искал способ достижения максимума числа микросостояний, чтобы получить равновесную энтропию согласно методу Больцмана. С другой стороны, Планк использовал метод Больцмана для получения числа микросостояний, пропустив шаг максимизации и предположив, что результат был равновесной энтропией.
198
Планк считал свои резонаторы различимыми, как и Больцман – атомы газа. Однако порции энергии считались неразличимыми, как и частицы у Бозе (фотоны).
199
Очевидно, Бозе обсуждал с Эйнштейном идею того, что фотоны имеют что-то наподобие спина, но Эйнштейн сказал ему не акцентировать на этом внимания. Сомнения в необходимости развития темы спина в общем-то понятны, поскольку концепция частицы с «квантовым спином» тогда была неизвестна.
200