Более того, идет ли речь о механическом трении (как в примере с качелями) или о тепловом трении — следствии взаимодействия разных температур (как в двигателе вашего автомобиля), — в любом случае произойдет потеря определенного количества тепла. Как бы то ни было, обратимость дает нам эффективную математическую модель, устанавливая недостижимую верхнюю границу (своего рода «золотой стандарт») для всех реальных систем. Это позволило Карно глубже понять природу тепловых двигателей и указало на новую физическую величину.
От горячего к холодному
Карно понял, что тепло переходит от горячего к холодному, а тепловой двигатель позволяет использовать это, чтобы производить работу. Он считал, что разница температур схожа с разницей высот, которая требуется для работы водяного двигателя. Примером водяного двигателя может быть колесо, расположенное внизу водопада. Вода, текущая сверху[42], вращает водяное колесо, и это движение используют для работы. Водяное колесо особенно эффективно[43], когда каждая капля воды, падающая сверху, ударяет колесо и вращает его; вода, которая падает мимо водяного колеса, не участвует в движении и потому снижает производительность.
Аналогично Карно предположил, что подобные явления справедливы и для тепловых двигателей. Более того, он считал, что невозможно извлечь работу из тепла при отсутствии разницы температур: должен быть нагреватель (источник) и холодильник (теплоприемник), чтобы двигатель работал — так же как должна быть разница высот для того, чтобы вода текла и двигала водяное колесо.
Он также был убежден, что при этом тепло обязано сбрасываться. Карно считал, что как в водяном колесе вода падает из высокой точки в низкую, так и тепло в тепловом двигателе «падает» из области высокой температуры в область низкой, в конце концов полностью «перетекая» в холодный резервуар.
При работе водяного двигателя вода перетекает сверху вниз, полностью сохраняя свой объем (кроме той части, которая испаряется). Карно как сторонник теплородной теории придерживался этой аналогии с водяным двигателем и был уверен, что так же сохраняется и тепло в тепловом двигателе и в процессе его работы все тепло из горячего резервуара перейдет в холодный.
Примерно через 30 лет после открытия первого начала термодинамики стало ясно, что сохраняется вовсе не тепло, а скорее энергия в целом. Так что количество тепла, изначально покинувшего горячий резервуар, равняется сумме количества тепла, поступившего в холодный резервуар, и работы, проделанной тепловым двигателем.
Математическая модель обратимого теплового двигателя Карно позволила ему прийти к важнейшим выводам. Чтобы понять важность его модели, проведем мысленный эксперимент. Представим, что у нас есть два обратимых тепловых двигателя Карно (см. рис. 5.2). Назовем их «двигатель 1» и «двигатель 2» и подключим к одним и тем же горячему и холодному резервуарам. Теперь представим, что каждый из них выполняет разное количество работы. Для ясности назовем эти количества
Рис. 5.2. Представим, что двигатель 1 получает начальное количество теплоты (
Ключевая особенность здесь — обратимость тепловых двигателей, которая заключается в отсутствии необходимости преодоления механического или термического трения. Поэтому требуется крохотный объем работы — в дополнение к производимой, — чтобы превратить двигатель в