Талант Уильяма Томсона проявился во многих сферах: в физике, инженерном деле, преподавании и даже в политике. У него был особый дар — находить правильные решения, особенно в математике. К моменту окончания своего обучения в Кембридже он уже опубликовал 12 работ по чистой и прикладной математике. В течение всей своей жизни он усердно трудился и издавал различные научные работы. В период с 1841 по 1908 год он ежегодно публиковал по крайней мере два труда, а иногда до двадцати пяти. В целом он написал 661 работу и получил патенты на 69 изобретений.
Всего в 16 лет Томсон прочитал «Аналитическую теорию тепла» Жозефа Фурье (1768–1830), опубликованную в 1822 году. Когда мы изучали тепловой двигатель Карно, мы говорили, что тепло переходит из нагревателя в холодильник. В теории Фурье тепло проходит через объект (постепенно) благодаря разнице (градиенту) температур в этом объекте; в каком-то смысле у объекта есть участки с нагревателем и холодильником.
Но теория Фурье полностью игнорирует физическую природу тепла, фокусируясь в первую очередь на особенностях его «поведения». Будь это теплород или движение частиц вещества, причины возникновения тепла Фурье в своей теории не рассматривал[54].
Итоговое уравнение, выведенное Фурье (точнее —
«Основополагающие причины нам неизвестны; но они являются предметом простых и постоянных законов, которые могут быть открыты путем наблюдения, а их изучение — объект натуралистической философии.
Тепло, как и гравитация, проникает во все уголки Вселенной, и его лучи пронизывают все в пространстве. Цель нашей работы — выявить математические законы, которым подчиняются эти элементы. Теория тепла сформирует один из самых важных разделов общей физики».
Конечно, тепловые теории Фурье и Карно ощутимо отличаются. Карно учил нас думать о тепле (о теплороде, как он его называл) как о водопаде, движущемся от высокой температуры к низкой, что позволяет производить работу. Фурье просто говорил, что, независимо от того, чем является тепло, его природа такова, что оно распространяется по объекту в результате мельчайших температурных отличий. И ничего не сообщал о возможности тепла производить работу, о чем говорил Карно; даже фактически утверждал, что в этом процессе какая-либо работа не требуется.
Все это тревожило Томсона. С одной стороны, была теплородная теория Карно с ее обратимым тепловым двигателем, который совершал работу за счет разницы температур. С другой стороны, теория Фурье утверждала, что тепло может переходить из горячего в холодный резервуар, не совершая вообще никакой работы. Безусловно, каждую из этих теорий подтверждали экспериментальные наблюдения, и обе, казалось, были верны. Однако для Томсона их отличие было явным, и он понимал, что нечто, должно быть, упускает, сравнивая теории Карно и Фурье. Тем не менее Томсон не мог найти какие-либо несоответствия между этими двумя теориями. И, как будто этой путаницы Томсону было недостаточно, сложности вскоре усугубились.
В 1847 году на встрече Британской ассоциации для продвижения науки Томсон знакомится с Джоулем. Джоуль выступал с докладом о своих исследованиях механического эквивалента тепла, объясняя, что данный объем работы произведет данное количество тепла (мы частично обсуждали это в части 1). Кроме того, Джоуль был убежден, что это преобразование может происходить в обратном порядке: данное количество тепла может произвести данный объем работы, как в тепловом двигателе. Теперь перед Томсоном возникли уже три теории: обратимый тепловой двигатель Карно, теплопроводность Фурье, «не выполняющая работу», и преобразование тепла в работу Джоуля («тепловой эквивалент работы»).