Из части 1 мы узнали о различных системах, а именно — о тех, которые изучал Галилео (например, шар, катящийся по наклонной плоскости). Тогда мы не говорили о том, что же на самом деле составляет систему и среду. Поэтому давайте проясним это теперь.
Под изолированной системой мы подразумеваем такую систему, в которую ничто не может вмешаться и из которой ничто не может выйти:
Что же насчет работы? В части 1 мы выяснили, что работа производится благодаря приложению сил к объекту, чтобы переместить его на определенное расстояние[60]. Если какая-либо
Кроме того, в сходном сценарии вы можете вообразить силу внутри системы (в здании), которая бы произвела работу, меняя окружающую среду; в этом случае мы скажем, что работа была произведена
Я толкну шар, заставляя его катиться по наклонной плоскости. Толчок передал шару определенный объем моей собственной энергии. Шар, катящийся вниз, изменяет свою потенциальную энергию на кинетическую. Шар катится по наклонной плоскости и, коснувшись поверхности, останавливается, но только после того, как он передаст всю свою кинетическую энергию этой поверхности. И хотя все это происходит внутри системы, «потери» энергии — например, когда я толкнул шар; потенциальная энергия, которую потерял шар при движении; кинетическая энергия, которую он потерял при остановке, — равняются ее приросту. Прирост складывается из энергии, которую шар получает при стартовом толчке; кинетической энергии шара в движении; кинетической энергии, полученной поверхностью от катящегося по наклонной плоскости шара, пока он не остановился.
Энергия всего лишь передается от одного объекта другому, в то время как ее общее количество остается прежним. Однако если мы снимем все эти ограничения, картина изменится. Предположим, что тепло может проникать сквозь стены. Далее мы позволим, чтобы работа проводилась на системе или самой системой таким способом, как было описано ранее. Теперь, когда система взаимодействует со своей средой через
Например, рассмотрим стакан воды с крышкой (благодаря которой молекулы воды не могут испаряться). Стакан и крышка формируют границы системы, и молекулы воды остаются внутри. Если стакан воды пришел в равновесие, теперь он сохраняет комнатную температуру, не теряя и не получая тепло, — помните, чтобы тепло могло переходить из одной области в другую (из горячей в холодную), необходима разница температур. Более того, если оно просто находится там, никакая работа не будет производиться[62]. Другими словами, наш стакан воды становится изолированной системой, и мы предполагаем, что, как и в других системах, энергия внутри него будет неизменна.
Теперь, однако, у нас нет способа провести подробный анализ процессов, происходящих внутри. В конце концов, мы даже не можем видеть молекулы воды. Безусловно, молекулы воды обмениваются энергией, поскольку они врезаются друг в друга, все время сохраняя энергию, и «потери» и «прибыли» отлично уравновешивают друг друга.