Рассмотрим резиновый шар, который уронили на землю. Шар (скорее всего) будет отскакивать не только вверх-вниз, но и отходить (диффундировать) от своего начального места приземления. Примерно так же движется и броуновская частица. Эйнштейн знал, что если правильно вычислить и экспериментально подтвердить характеристики перемещения, будет доказано существование атомов. То есть способность молекул воды перемещать броуновскую частицу от ее отправной точки подтвердило бы существование молекул.
Эйнштейн вывел выражение для
Рисунок 12.3. Броуновская частица (более крупная частица) сталкивается с меньшими частицами жидкости. Постоянные столкновения с меньшими частицами жидкости вынуждают броуновскую частицу сдвигаться. С течением времени эти движения заставляют броуновскую частицу перемещаться в жидкости (см. пунктирные стрелки).
Давайте вновь проведем аналогию с шаром: чем больше времени проходит, тем дальше шар перемещается от точки касания с поверхностью при первом падении на пол. Подобным образом мы наблюдаем перемещения нашей броуновской частицы за данный временной интервал и вычисляем расстояние, которое она пройдет, и затем мы проделаем это снова и снова, и снова, пока не получим надежное среднее значение, или
Давайте подробнее остановимся на
Однако представьте, что вам пришлось бы проделать эксперимент, который мы только что более-менее описали. Именно это в 1909 году сделал Жан-Батист Перрен. В конце концов, после нескольких неудавшихся попыток других экспериментаторов измерить значение для среднего смещения, получавших значение, превышавшее предсказанное Эйнштейном[163]
, Перрен подтвердил результаты вычислений Эйнштейна. Это позволило закрыть вопрос о существовании атомов.Фридрих Вильгельм Оствальд, противник существования атомов, в 1909 году наконец признал эту теорию: «Теперь я убежден, что недавно, спустя сотни и тысячи лет, мы получили экспериментальные данные дискретной природы материи, ее атомного строения». Однако другой исследователь, Эрнст Мах, остался противником теории атомов на всю жизнь.
В качестве бонуса уравнение Эйнштейна также дало и новое подтверждение числу Авогадро[164]
. Идеи Эйнштейна утвердили положение кинетической теории, которая описывает (среди прочего) атомы и молекулы как частицы, постоянно находящиеся в движении. Вычисления Эйнштейна включали статистические методы, например методы Максвелла и Больцмана. На самом деле в своем выражении он использовал более общий вариант уравнения Больцмана для энтропии.В 1906 году Больцман вернулся домой в Вену из Калифорнии, не зная о работе Эйнштейна; позже в этом году Больцман покончил с собой после многих лет борьбы с приступами депрессии. Работа Эйнштейна, содержавшая доказательства существования атомов и принимавшая во внимание кинетическую энергию, подходила к поведению вещества статистически и действительно понравилась бы Больцману (а также Максвеллу и Клаузиусу).
Строение атома: части частиц
Атом всегда был синонимом