С хорошей точностью, когда вы помещаете еду в духовку и нагреваете ее до определенной температуры, а духовка достигает этой температуры и впоследствии ее поддерживает, система (еда и духовка) в конечном итоге приходит в тепловое равновесие. Допустим, мы поместили индейку в духовку и нагрели ее до 400 °F (204 °C). Как только температура достигла этих градусов и поддерживается некоторое время, мы можем утверждать (для наших целей), что духовка и индейка находятся в тепловом равновесии.
Далее, как мы говорили ранее, мы ожидаем, что индейка и внутренние стенки духовки испускают и поглощают тепловое излучение. Но это вовсе не означает, что индейка станет светиться красным, как электрический нагревательный элемент духовки; материалы все-таки разные. Тем не менее она излучает и поглощает — преимущественно в инфракрасной области спектра, которую мы не можем увидеть просто своими глазами. Поскольку тепловое равновесие установилось, индейка излучает с той же скоростью, что и поглощает. То же самое относится к внутренним стенкам духовки и всему тому, что мы туда добавляем и чему позволяем достичь теплового равновесия. Итак давайте добавим печеную картошку и доведем ее до теплового равновесия. Сфокусируемся только на индейке и картошке.
Чтобы упростить рассуждение и сосредоточить наше внимание на индейке и картошке — вещах, находящихся
•
• Вследствие теплового равновесия и индейка, и картошка будут излучать тепловую энергию в том же темпе, в котором они будут ее поглощать[170]
.Эти положения, записанные математически, означают[171]
:где
Представим идеальный объект, поглощающий все падающее на него тепловое излучение независимо от частоты. Это означает, что α = 1, то есть 100 % излучения, падающего на идеальный объект, поглощается. Такое тело по цвету абсолютно черное, так его и называют —
Таким образом, если один объект в нашей системе — абсолютно черное тело — скажем, им мы заменим картошку, тогда наше уравнение примет вид:
и поскольку не имеет значения, каковы точные характеристики других объектов (индейки, картошки и т. п.), мы можем убрать подстрочные индексы в левой части равенства и просто записать:
что по-простому означает: отношение мощности теплового излучения объекта (излучательной способности) к доле поглощаемой им мощности теплового излучения равно излучательной способности идеального объекта, называемого абсолютно черным телом, излучающим и поглощающим на всех частотах. Обычно это уравнение записывают для определенной частоты ν, а также из нашего обсуждения ясно, что также подразумевается и определенная температура
Значение данного уравнения заключается в том, что знание спектра излучения абсолютно черного тела (правая часть) дает нам отношение (левая часть) для любого объекта. Другими словами, для любого объекта в состоянии теплового равновесия при температуре
Кирхгоф поставил теоретикам и экспериментаторам задачу найти форму спектра излучения абсолютно черного тела, поскольку считал, что ее решение имеет основополагающее значение: