Мы уже сталкивались с применением вероятностей для решения физических проблем. Например, мы знаем, что система атомов идеального газа, находящаяся в тепловом равновесии, подчиняется распределению Максвелла по скоростям (тогда как полная энергия — распределению Больцмана). То есть мы используем вероятности для упрощения вычислений, которые иначе были бы очень сложными или невозможными. Но нужно отметить: это не значит, что скорости атомов идеального газа по своей природе неизвестны, из-за чего приходится довольствоваться неопределенным описанием распределения вероятности (например, распределением Максвелла). Наоборот, вероятность просто используют как инструмент, она не является фундаментальной физической природой.
Но в 1917 году Эйнштейн выявил удивительную реальность, согласно которой природа оставляет некоторые вещи неизвестными в принципе, а вероятность, связанная с этими вещами, — оказывается больше, чем просто удобным инструментом вычислений. Это физическая реальность.
Фотоны и закон излучения Планка: наконец-то вместе
Как уже было упомянуто выше, вывод закона излучения Планка был сделан преимущественно с использованием классической механики и закончился гипотезой о квантах энергии. Однако истинная квантовая теория должна была быть совершенно свободной от всех артефактов классической механики. В частности, это стало мотивацией для работ Эйнштейна 1916–1917 годов по взаимодействию света и вещества. На самом деле Эйнштейн имел возможность прийти к «намного более квантовому» варианту вывода закона излучения Планка. В конечном итоге он оказался очень близок к нему, но вынужден был сделать предположения (связанные, например, с правилом частот Бора, законом смещения Вина), которые лишили его вывод возможности стать полностью квантовым. Хотя еще в 1905 году Эйнштейн был готов дать полностью квантовый вывод закона излучения Планка.
В то время Эйнштейн представил свет в ящике в состоянии теплового равновесия, вычислил энтропию и получил окончательное выражение того же самого вида, что и для набора частиц идеального газа (также находящегося в ящике в состоянии теплового равновесия). Это интригующее сходство привело Эйнштейна к заключению, что при низких плотностях энергии свет ведет себя как частицы (фотоны), а не как волны.
Это новое описание света дало средство глубже исследовать его физические свойства, и почти двадцать лет Эйнштейн занимался ими в одиночестве. Вспомним, что Планк вывел аналогичным способом выражение для энтропии одного из резонаторов. После это он провел очень важное вычисление — посчитал число микросостояний
Для Планка этот дополнительный шаг изменил все, поскольку привел его к новой физической интерпретации, которой прежде не было. В то время как метод Больцмана привел Планка к идее квантов энергии, световые кванты Эйнштейна (эти «порции» уже с самого начала были в его распоряжении)[193]
не привели его к методу Больцмана. Он вообще не определял число микросостояний системы фотонов в рамках этого подхода[194]. Сделав это, он бы нашел ни более ни менее как недостающие кусочки «пазла света», которые искал еще почти двадцать лет.Он был вообще не знаком с методом Больцмана? Вовсе нет. Планк очень хорошо знал метод и открыто критиковал его применение и у Больцмана, и у Планка. Возможно, в 1905 году он не мог решиться использовать метод Больцмана. Тем не менее проведенный в 1916–1917 годах вывод Эйнштейна был настолько близко к полностью квантовому выводу закона излучения Планка, насколько это возможно, — до того, как проблему вновь рассмотрел в 1924 году неизвестный физик из Калькутты, Индия.
Сатьендра Нат Бозе (1894–1974) был старшим и единственным сыном в семье из семи детей. Будучи учеником, он делал исключительные успехи в математике. В старшей школе он получил за экзамен по математике 110 баллов из возможных 100, потому что, помимо правильного решения всех задач, некоторые он решил несколькими способами. В 1913 и 1915 годах он получил степень бакалавра и магистра смешанной математики соответственно (этот раздел близок к тому, что сейчас называют прикладной математикой, или математической физикой), оба раза заняв первое место в группе. На самом деле его экзаменационный бал для получения степени магистра был настолько высоким, что поставил новый рекорд, который до сих пор не побит.