В однократно ионизованном состоянии атом гелия очень «водородоподобный» в том смысле, что у него, как у водорода, имеется только один электрон. От атома водорода он отличается ядром, содержащим два протона (а в ядре атома водорода — только один) и два нейтрона (тогда как в атоме водорода их нет). Это был другой крупный успех теории Бора. Сначала Эйнштейн отвечал на нее слабой похвалой, но, когда он узнал, что она смогла правильно предсказать серию Пикеринга, он сменил тон: «Это громадное достижение. Тогда теория Бора, несомненно, верна».
Были и другие успехи. Используя свою теорию, Бор сделал правильный вывод, что рентгеновское излучение возникает при переходе внутреннего электрона на орбиталь, или квантовое состояние, с меньшей энергией, оставшейся вакантной из-за того, что находившейся там другой электрон был прежде выбит из атома. Более того, Бор предпринял первый шаг навстречу квантовой химии, выяснив, что химические свойства атомов обусловливаются их внешними, или
В 1913 году статью Бора об атоме водорода опубликовали, и за ней тут же последовали две другие. Отношение к его теории было неоднозначным. Возможно, один из самых беспокоящих вопросов к теории задал Резерфорд, удивлявшийся тому, каким образом электрон, находящийся в каком-то квантовом состоянии, «решает», в какое состояние перейти дальше. Проблема состояла в том, что, казалось, в теории отсутствовала типичная идея причины и следствия (причинности). В самом деле, эта проблема, присущая квантовой механике, возникла снова позже, когда Эйнштейн вернулся к взаимодействию света и вещества.
Атомы и свет
К 1911 году Эйнштейн уже выдвинул гипотезу, что свет состоит из частиц, которые он назвал световыми квантами (впоследствии названными фотонами). Более того, он показал, что свет обладает неотъемлемой особенностью демонстрировать свойства и частицы, и волны. Хотя в понимании таинственной природы света он зашел дальше, чем кто-либо, она продолжала его озадачивать: «Я больше не спрашиваю, существуют ли на самом деле эти (световые) кванты. Как и больше не пытаюсь построить их, поскольку сейчас знаю, что мой разум не способен продвигаться в этом направлении».
Однако Эйнштейн примирился со странным поведением света, сосредоточившись на общей теории относительности до ноября 1915 года, и снова вернулся к свету в июле 1916 года. Конечным результатом было более глубокое понимание взаимодействия света с веществом, которое привело к публикации трех статей: двух в 1916 году и третьей, наиболее выдающейся, — в 1917 году.
Как мы уже видели, Планк положил начало квантовой теории света и вещества. В его модели вещество приобрело намеренно неоднозначную форму[191]
«резонаторов» — не более чем колеблющихся зарядов малой массы. Взаимодействие резонатора со светом было «по большей части» классическим, в том смысле, что это явное взаимодействие происходило между ним и классическим электрическим полем света. Квантовая порция в данной теории относилась к энергии резонаторов, и ее появление было довольно удивительным и не имело механического объяснения. Бор пустил квантовую теорию внутрь атома квантованием электронных орбит. Он также обеспечил квантовой теорией свет и вещество (в атомных масштабах), где скачок электрона между орбитами приводит либо к излучению, либо к поглощению света. Квантовая теория света и вещества Эйнштейна пошла дальше этих двух теорий, объединяя их лучшие аспекты.Эйнштейна мотивировало несколько факторов. Несомненно, кванты и «корпускулярно-волновой дуализм» света продолжали сильно влиять на направление его мысли. Бор предоставил механизм взаимодействия света и вещества, работающий в атомных масштабах, который был намного более детализированным, чем в модели резонаторов и света Планка, и Эйнштейн хотел глубже исследовать его последствия. Наконец — и на это стоит обратить внимание — прошло 16 лет с тех пор, как Планк получил свой закон излучения, а полного квантовомеханического вывода у этого закона все еще не было. Эйнштейн говорил:
«Вывод (Планка) был беспрецедентной смелостью, но он получил блестящее подтверждение. …Однако оставалась неудовлетворенность тем, что анализ (в рамках классической механики), который привел к (закону излучения Планка), несовместим с квантовой теорией, и неудивительно, что сам Планк и все теоретики, постоянно работающие над этой темой, попытались модифицировать теорию так, чтобы она опиралась на непротиворечивые основания».