Механизмы реакций, как правило, в неорганической и органической химии описываются для индивидуальных молекул, присутствующих в газовой и жидкой фазе.
К процессу выплавки чугуна такой подход неприменим, так как атому железа находятся в кристаллической решетке. Подход органической химии может использоваться только для жидкой фазы, где нет влияния кристаллической решетки.
В настоящее время для изучения химизма реакций железоуглеродистых соединений и соединений оксидов железа используют квантово-химические расчеты и проводят физико-химические методы анализа соединений для подтверждения структуры по результатам эксперимента.
Как известно, процесс окисления железа в доменной печи проходит по условной схеме:
Fe2O3 → Fe3O4 → FeO →Fe
В химии кристаллов играет роль химической взаимодействие с окислителем на поверхности соединения кристалла и перегруппировка кристалла.
Именно из этих двух аспектов и состоит описание механизма неорганической реакции окисления железа.
Отметим, что для органической химии (в нефтехимии), важны только стадия адсорбции реагента на решетку, перегруппировка в органической молекуле (переходное соединение с образованием связи с атомами решетки, за счет которых связи в органической молекуле ослабляются и становится возможной химическая реакция) и десорбция.
Запись последовательно выделенных по высоте доменной печи соединений не позволит описать механизм реакции так как не показывает процессов изменения конфигурации, а только фактически фиксирует промежуточные вещества.
Механизм реакции можно получить только путем квантово-механического расчета кластера атомов кристаллической решетки. В процессе расчета наглядно видны процессы химических взаимодействий атомов, изменения электронной плотности для всего кластера, перегруппировки атомов в решетке кристалла. В результате видно, как совокупность перечисленных процессов приводит к образованию одних соединений из других. А совпадение с экспериментальными данными подтверждает правильность квантово-механического расчета.
Важно, чтобы в расчет вводилась корректная конфигурация исходных веществ, получались корректные конфигурации решеток промежуточных веществ и получалась правильная конфигурация решетки продукта реакции.
__
В работе [29] авторами установлен ! механизм реакций, протекающий по схеме:
Fe2O3 → Fe3O4 → FeO →Fe
Авторы работы [29] уточняют схему:
α-Fe2O3 → γ-Fe2O3 → Fe3O4 → FeO
Также авторы [29] приводят графические результаты расчетов структур соединений по схеме.
Вместе с тем, в работе [30] авторами приводятся струкруты соединений железа с углеродом и железа с кислородом (оксидов).
__
Авторы [29] не описывали механизм реакций, как это принято в литературе по механизмам химических реакций. Используя графические реузльтаты авторов [29] и [30] можно впервые записать механизм химической реакции в форме, как это принято в литретуре по механизмам химических реакций.
Для справки приведем подходы к описанию механизмов неорганических и химических реакций в химической литературе. В работах по неорганической химии [12], [13], [14] реакции описываются максимум брутто-формулами и приводятся текстом данные о структуре соединений. В литературе по механизмам неорганических реакций координационных соединений металлов в растворе [15], [16], механизмы реакций описываются аналогично описанию в книгах по органической химии – для индивидуальной молекулы комплексного соединения в растворе (без учета влияния атомов кристаллической решетки). Механизмы радикальных цепных реакций [17] описываются отдельными стадиями, так же как реакции взаимодействия с металлической стенкой сосуда [18]. В органической химии принято описание с обозначением стрелками смещения электронной плотности и используются устаревшие структуры изображения веществ, например, в работах [31], [32].