Задача заключается в том, чтобы наилучшим (оптимальным) образом распределить имеющиеся ресурсы по предприятиям, т. е. найти неизвестные величины
ПРИМЕР
Собственник располагает четырьмя видами ресурсов (
Таблица 16.2
Распределение ресурсов по предприятиям сопряжено с необходимостью учета ряда ограничений, которые могут быть описаны системой четырех уравнений с шестью неизвестными, аналогичной системе (16.10):
Смысл первого уравнения в нашем примере в том, что ресурс вида 1, общий ресурс которого составляет 16 единиц, может размещаться в количестве четырех единиц на предприятии первого типа и одной единицы – на предприятии четвертого типа. Аналогично раскрывается смысл второго и последующих уравнений. Последнее условие говорит о том, что число предприятий не может быть отрицательным.
Необходимо определить, какое количество предприятий каждого типа следует иметь, чтобы общие издержки были минимальными.
В соответствии с табл. 16.1 целевая функция, подлежащая оптимизации, примет вид:
Решение
Решение задачи сводится к выполнению ограничений, заданных уравнениями (16.12), с учетом условия минимизации выражения (16.13).
В нашем примере, когда
Чтобы представить ограничения и целевую функцию на графике, необходимо выразить все известные через независимые величины. Например,
Из уравнений (16.12) следует:
Целевая функция примет вид
Из сопоставления уравнения (16.14) и последнего из ограничений (16.10)
Каждому из неравенств (16.16) на графике рис. 16.1 соответствует полуплоскость, в пределах которой находятся все допускаемые данным неравенством значения переменной величины
Таким же образом можно построить границы, определяемые другими уравнениями.
Неравенствам (16.16) соответствует некоторая область – шестиугольник
Из всех допустимых планов нас интересует оптимальный план, при котором функция цели
Целевой функции соответствует семейство параллельных прямых. Рассмотрим одну из них, проходящую через начало координат, что будет иметь место при
Интересующая нас прямая
Поскольку мы добиваемся минимального значения
Единственной точкой, соответствующей оптимальному плану, будет та вершина многоугольника
Подставляя полученные значения
Таким образом, оптимальный план будет следующим:
Линейная форма (величина издержек) при этом будет минимальной:
На практике встречается ряд задач, аналогичных рассмотренному примеру, но требующих максимизации целевой функции (например, величины дохода или прибыли).
При решении этих задач целевая функция рассчитывается по формуле, аналогичной (16.11):