Читаем Методы оценки качества поверхностных вод суши полностью

Химический состав природных вод – это сложный комплекс растворенных газов, органических и неорганических веществ, находящихся в ионной, молекулярной, коллоидной и взвешенной формах. В природных водах растворены почти все известные на земле химические элементы в виде простых и сложных ионов, комплексных соединений, растворенных или газообразных молекул, стабильных и радиоактивных изотопов (Никаноров, 2008). Химический состав водной среды играет существенную роль в жизни гидробионтов. Он влияет на рост, развитие, размножение гидробионтов, структуру, устойчивость, их продуктивность и т.д.

Химические параметры позволяют охарактеризовать качество вод, классифицировать их по минерализации, составу, оценить обеспеченность водных объектов питательными веществами, необходимыми для развития водной флоры и фауны; установить степень загрязненности воды (включая случаи резкого повышения при авариях); выявить источники загрязнения, определить соответствие воды требованиям конкретных водопользователей.

Содержание (концентрации) различных компонентов и химических веществ в природных водах позволяют оценить разнообразные методы химического анализа, такие как химические (весовые и объемные), электрохимические, спектрохимические и хроматографические. Это основные группы методов, которые будут рассмотрены ниже. Существуют также современные аналитические методы: методы элементного анализа (рентгеноспектральный анализ, рентгено-флуоресцентный, нейтронно-активационный анализ и др.), аналитическая атомная спектрометрия, капиллярный электрофорез, ядерный магнитный резонанс, электронный парамагнитный резонанс и другие.

3.1. Химические методы анализа

В основе химических методов анализа лежит проведение химической реакции с образованием соединения (или продуктов реакции) постоянного состава с последующим количественным определением содержания образующихся продуктов реакции. В настоящее время это в основном методы объемного анализа. Распространенные ранее весовые методы из-за их трудоемкости и длительности используются изредка в качестве арбитражных, когда возникают разногласия, например, при определении сульфатов, высоких концентраций нефтепродуктов, жиров.

Методы объемного анализа предусматривают взаимодействие исследуемого компонента с реактивом, который добавляется в виде раствора определенной концентрации (титрующий раствор) до того момента, когда количество прибавленного реактива не станет эквивалентно количеству определяемого компонента в растворе. Этот процесс называется титрованием, а момент окончания титрования – точкой эквивалентности. Конец титрования обычно устанавливают по изменению цвета индикатора, то есть вещества, которое изменяет свою окраску при концентрациях реагирующих веществ, близких к точке эквивалентности. Индикатор и условия титрования выбирают так, чтобы точка титрования индикатора совпадала с точкой эквивалентности или была возможно ближе к ней (Никаноров, 2008; Харитонов и др., 2012).

Чувствительность методов объемного анализа 10–3–10–4% (массовая доля), погрешность определения 0,5–1,5 %. Основным преимуществом объемного анализа являются простота, быстрота определения, а также широкие возможности использования разнообразных химических свойств веществ. Благодаря этим достоинствам методы объемного анализа в настоящее время являются основными при определении макрокомпонентов природных вод (Предеина, Решетняк, 2012).

В зависимости от типа реакций методы объемного анализа делятся на методы кислотно-основного титрования, окислительно-восстановительное титрование, осадительное титрование и титрование с образованием комплексов.

При кислотно-основном титровании в качестве титрованных растворов обычно применяют кислоты и щелочи. В гидрохимии этим методом определяют диоксид углерода и гидрокарбонаты (Руководство … 2009).

Метод определения диоксида углерода основан на количественном переводе угольной кислоты в ионы НСО-3 при титровании пробы щелочью (рН 8,2–8,4) в присутствии индикатора фенолфталеина:


screen_image_25_287_132


screen_image_25_314_152


Для определения гидрокарбонатных и карбонатных ионов используется их взаимодействие с сильной кислотой, в результате чего образуется Н2СО3, которая распадается на СО2 и Н2О:


screen_image_25_394_101


screen_image_25_420_102


Метод предусматривает добавление избытка соляной кислоты (до рН~3), удаление образующегося диоксида углерода и последующее оттитровывание избытка кислоты раствором буры Na2B4O7 в присутствии смешанного индикатора метилового красного – метиленового голубого.

Перейти на страницу:

Похожие книги

Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука
История астрономии. Великие открытия с древности до Средневековья
История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея. Далее автор рассматривает научные воззрения средневековых ученых Запада и Востока, идеи Николая Кузанского, Региомонтана, Кальканьини и других мыслителей эпохи Возрождения и завершает свой исчерпывающий труд изложением теорий Коперника, Тихо Браге и Кеплера.

Джон Дрейер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука