Читаем Методы оценки качества поверхностных вод суши полностью

Для обнаружения скачка потенциала в конечной точке титрования применяются расчетные и графические способы. Первый способ основан на проведении ориентировочного титрования равномерными большими порциями стандартного раствора. Второй способ заключается в построении кривой титрования и нахождении точки перегиба (Никаноров, 2008; Руководство … 2009).

Метод потенциометрического титрования используется при определении широкого круга ионов, входящих в состав природных вод в относительно высоких концентрациях: гидрокарбонатов, сульфатов, органических кислот и др. Анализ можно проводить в окрашенных и мутных водах.

Преимущества потенциометрических методов: быстрота и простота; используя электроды, можно определять компоненты в очень маленьких по объему пробах, до десятых долей миллиметра; возможность проводить анализы в мутных и окрашенных растворах, вязких пастах, исключая процедуры фильтрования и перегонки; проба остается неиспорченной и пригодна для других анализов; возможность полной и частичной автоматизации.

Кондуктометрический метод анализа основан на измерении электропроводимости анализируемых растворов электролитов, обусловленной движением ионов под действием электрического тока. Значение электрической проводимости зависит от природы электролита, его температуры и концентрации раствора. В гидрохимии кондуктометрический метод используется при определении общей минерализации (Никаноров, 2008; Руководство … 2009).

Электрическая проводимость природной воды – показатель, характеризующий способность воды проводить электрический ток. Значение электрической проводимости растворов зависит в основном от концентрации растворенных минеральных солей и температуры. По значениям электрической проводимости водной среды можно ориентировочно оценить значение минерализации воды по предварительно установленной зависимости между электрической проводимостью и минерализацией воды.

При этом изучается зависимость между электрической проводимостью раствора и концентрацией ионов. Электрическая проводимость является результатом диссоциации вещества на ионы и миграции ионов под действием внешнего источника электрического напряжения.

Различают удельную, эквивалентную и относительную электрическую проводимость. Удельная электрическая проводимость – проводимость 1 м3 раствора, помещенного между электродами площадью 1 м2 на расстоянии 1 м (См/м).

Эквивалентная электрическая проводимость – это электрическая проводимость раствора, содержащего 1 моль эквивалента вещества, измеренная на расстоянии 1 см.

Относительная электрическая проводимость R – это отношение удельной электрической проводимости раствора к удельной электрической проводимости стандартного раствора (Предеина, Решетняк, 2012).

Кондуктометрический метод может быть реализован в варианте прямой кондуктометрии или кондуктометрического титрования.

Прямая кондуктометрия – определение удельной электрической проводимости как оценки минерализации вод, которую определяют главные ионы – кальция, магния, калия, натрия, гидрокарбонатов, хлоридов, сульфатов.

Кондуктометрическое титрование основано на применении химических реакций, в результате которых изменяется электрическая проводимость раствора.

Достоинства метода: быстрота, удобство и возможность определения ионов в мутных и окрашенных растворах, недостаток – электрическую проводимость раствора можно измерить с высокой точностью только в разбавленных растворах.

Полярографический метод анализа основан на измерении тока, изменяющегося в зависимости от напряжения в процессе электролиза, в условиях, когда один из электродов (катод) имеет очень малую поверхность (поляризующийся электрод), а другой (анод) – большую (неполяризующийся электрод). Поляризующимся катодом в классическом варианте являются капли ртути, вытекающие из тонкого отверстия капиллярной трубки. В настоящее время широкое распространение получили катоды: платиновый (вращающийся), графитовый, серебряный, стеклоуглеродный и др. Неполяризующимся анодом являются «донная» ртуть или стандартные электроды сравнения с большой поверхностью. Ток, при котором достигается полный разряд всех ионов анализируемого вещества, поступающих в приэлектродное пространство вследствие диффузии, называется предельным диффузионным током.

Полярография заключается в расшифровке вольт-амперных кривых – полярограмм (рис. 2а), выражающих зависимость силы тока (I) от приложенного к электролитической ячейке постоянного напряжения (E) (Никаноров, 2008).

Перейти на страницу:

Похожие книги

Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука
История астрономии. Великие открытия с древности до Средневековья
История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея. Далее автор рассматривает научные воззрения средневековых ученых Запада и Востока, идеи Николая Кузанского, Региомонтана, Кальканьини и других мыслителей эпохи Возрождения и завершает свой исчерпывающий труд изложением теорий Коперника, Тихо Браге и Кеплера.

Джон Дрейер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука