О перспективности этого направления космических исследований, сулящего в будущем буквально революционные преобразования в технологии изготовления традиционных и новых материалов, писалось и пишется достаточно много. Как известно, основная цель космической технологии — использование факторов космического полета, главным образом невесомости, для получения полезных и подавления вредных влияний на процесс изготовления веществ и создание новых, технологически перспективных материалов.
В настоящее время трудно указать те рубежи, на которые выйдет промышленное производство в космосе благодаря созданию орбитальных технологических комплексов. Нам еще предстоит выявить технический потенциал невесомости, и пройдет немало лет, прежде чем человечество в полной мере воспользуется преимуществами и возможностями новой среды. Но и сейчас можно утверждать, что перед космической технологией, космическим материаловедением с созданием орбитальных станций открываются невиданные, фантастические перспективы.
А пока идет накопление фактов, кропотливое изучение различных сторон течения технологических процессов в невесомости, поведения в космосе материалов, экспериментальное производство и анализ выращенных на орбите кристаллов. В ряду этих исследований находятся и эксперименты, проведенные международными экипажами.
Большая часть исследований в области космического материаловедения была проведена международными экипажами на советских электронагревательных установках «Сплав» и «Кристалл». Описание этих установок было дано в отечественной печати[22].
Рассмотрим далее эти эксперименты в той последовательности, в которой они выполнялись международными экипажами. Следует отметить, что если судить по названиям, то технологических экспериментов было всего 15. На самом деле большинство из них представляли собой серии исследований, часто весьма существенно различавшихся по целям, исходным материалам, условиям проведения эксперимента и т. п. Поэтому правильнее будет говорить о нескольких десятках экспериментов, проведенных на станции «Салют-6» космонавтами социалистических стран.
В серии
В других экспериментах серии изучался процесс затвердевания (кристаллизации) расплава двух веществ, представляющего эвтектику[23]. При этом один из компонентов содержался в избытке. В этом случае процесс затвердевания проходил в два этапа: кристаллизация из расплава основного компонента и последующее отвердевание остаточной эвтектики.
В качестве основного компонента в первом эксперименте был выбран анизотропный кристалл хлорида свинца (РbСl2), поскольку на нем проще проследить влияния температурного перепада и гравитационного поля. Вторым изучаемым веществом стали хлорид меди (GuCl) и хлорид серебра (AgCl). Во втором эксперименте исследовалась кристаллизация бромида одновалентной ртути (Hg2Br2) из раствора в эвтектическом расплаве с бромидом двухвалентной ртути (HgBr2), обладающим чрезвычайно высокими значениями параметра связи в кристаллической решетке.
В третьем эксперименте изучалось затвердевание и образование стекловидной системы, представленной полупроводниковым стеклом с тетраэдрической структурой решетки (в состав системы входили атомы германия, сурьмы и серы). Цель этого эксперимента заключалась не только в определении условий образования стекла в состоянии невесомости, но также в изучении процессов зародышеобразования и разделения фаз, протекающих в стеклянной матрице, и определении влияния этих процессов на основные физические характеристики получаемых материалов.
Коротко об условиях проведения экспериментов. Установка «Сплав» была размещена вблизи корпуса орбитальной станции, неподалеку от центра тяжести всего научного комплекса. В ходе экспериментов весь орбитальный комплекс ориентировался так, чтобы его продольная ось была направлена к центру Земли.
Для повышения «чистоты» эксперимента в наиболее ответственные периоды кристаллизации на орбитальном комплексе выключались все системы и агрегаты, вызывающие колебания станции, сводились к минимуму даже перемещения космонавтов. Поэтому в эти решающие для эксперимента периоды времени сила тяжести по всем трем направлениям была несущественной и составляла не более 10-6—10-7
Образцы исследуемых материалов находились в кварцевых ампулах (в условиях вакуума), размещенных в контейнере, представляющем собой герметичный стальной цилиндр длиной 172 мм и диаметром 17 мм. После помещения контейнера в цилиндрическую полую печь установки начиналось нагревание образцов с таким расчетом, чтобы температура в контейнере росла до тех пор, пока не достигала величины выше точки плавления исследуемых материалов.