Читаем Международные экипажи в космосе полностью

Максимальный нагрев в экспериментах «Морава» достигал 500 °C. После достижения максимальной температуры началось ее регулируемое снижение. Причем максимальная температура достигалась примерно через 24 ч после начала эксперимента, а затем в режиме охлаждения возникал процесс затвердевания. Охлаждение длилось около 20 ч со скоростью примерно 11 °C в час. Таким образом, весь рабочий цикл составлял около двух суток.

Одновременно в ЦПК им. Ю. А. Гагарина специалисты СССР и ЧССР провели наземную часть экспериментов. Она по своей сути обратна космической: если в космосе нужно было свести к минимуму силу земного тяготения, то здесь с помощью центрифуги исследовались рост и направленное затвердевание кристаллических материалов при различных перегрузках. Располагая контейнер с исходным веществом то по вектору углового ускорения, то перпендикулярно ему, специалисты сравнивали структуру и свойства материалов, полученных при различных направлениях перегрузки.

Наземный эксперимент на центрифуге был осуществлен на установке «Кристалл», работающей по методу направленной кристаллизации. Однако в отличие от установки «Сплав» процесс здесь происходит в условиях фиксированного теплового поля, а изменение зон нагрева достигается перемещением ампулы с материалом, которое осуществляется механически в соответствии с требуемой программой. Сопоставление результатов всего комплекса экспериментов «Морава» помогло определить зависимость свойств материалов от гравитационных условий их получения и выработать рекомендации по созданию перспективных технологических соединений.

Микроскопическое исследование структуры материалов, полученных одновременно в условиях космического полета и на Земле (при прочих идентичных условиях), показывает, что кристаллы, выращенные в космосе, меньше, чем аналогичные кристаллы, полученные на Земле. Причина заключается в том, что в космосе миграция ионов в расплаве происходит лишь путем диффузии: именно такое влияние оказывает невесомость на процесс зародышеобразования и роста кристаллов из жидкой фазы. Влияние же невесомости на эвтектические растворы противоположно: кристаллы обеих фаз эвтектики больше, чем полученные на Земле.

Процесс затвердевания кристаллов в космосе подвержен влиянию микрогравитации. И хотя она была мала в этом эксперименте, но все же на внешней поверхности образца можно заметить следы воздействия радиальной составляющей микрогравитации, зарегистрированной в ходе эксперимента. Оказывается, что поле тяготения порядка 10-6 g достаточно, чтобы повлиять на конфигурацию атомов в исследованной расплавленной системе, а также на процесс затвердевания.

В экспериментах «Сирена» (СССР-ПНР) изучался процесс направленной кристаллизации в полупроводниковых материалах, получаемых из жидкой фазы в условиях невесомости. В качестве исследуемых материалов в экспериментах «Сирена» были выбраны тройные полупроводники «ртуть — кадмий — теллур» (CdHgTe), «кадмий-ртуть — селен» (CdHgSe) и «свинец — селен — теллур»;(PbSeTe).

Эти материалы в течение многих лет тщательно изучаются в Институте физики Академии наук ПНР, сотрудники которого много сделали для выяснения физических характеристик материалов этого типа и возможностей их применения. Полупроводники, в состав которых входят названные элементы, характеризуются высокой чувствительностью и малой инерционностью. В настоящее время они считаются наилучшими детекторами инфракрасного излучения, способными работать в диапазоне длин волн около 10 мкм, т. е. в пределах так называемого «атмосферного окна». Имеет перспективы и использование этих материалов в лазерных устройствах с перестраиваемой частотой.

Однако получение однородных полупроводниковых сплавов данного типа в наземных условиях существенно затрудняется процессами конвекции, обусловленной действием силы тяжести, поскольку химические элементы — ртуть, кадмий и теллур — значительно отличаются по массе. В свою очередь, однородность и структурное совершенство полупроводниковых материалов, полученных в космосе, обусловливает их особые физические свойства и возможности применения. Если в лабораторных условиях на Земле достигается степень однородности кристаллов этого типа порядка 12 %, то полупроводники, полученные в экспериментах «Сирена» в условиях невесомости, характеризуются значительно более высокой степенью однородности — около 60 %.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука