Понятие сильных и слабых маневров для подобных объектов и замкнутых систем связано с различением маневров в безразмерных единицах времени. Подобными могут быть и физически разнокачественные процессы, например, описываемые одной и той же математической моделью. Но для физически однокачественных процессов, отличающихся размерными характеристиками, области реальных параметров сильных и слабых маневров будут различны. Об этом всегда необходимо помнить имея дело с реальными однокачественными замкнутыми системами, различающимися своими размерными характеристиками.
Маневры и
Замкнутая система может иметь один и более устойчивых балансировочных режимов, принадлежащих к счетному или несчетному множеству. Перевод замкнутой системы из одного балансировочного режима и другой — наиболее часто встречающийся вид маневра. Маневробычно имеет смысл, если конечный для него балансировочный режим — устойчивый режим для данной замкнутой системы. В пространстве параметров, описывающих замкнутую систему, маневр — траектория перехода от одной точки (начальный вектор состояния) к другой точке (конечный вектор состояния). Маневр — безусловно устойчив, если возмущающее воздействие, в его ходе воспринимаемое замкнутой системой, не выведет траекторию в пространстве параметров из некоего коридора допустимых отклонений от идеальной траектории. По отношению к маневру вектор целей — функция времени, т. е. идеальная траектория и хронологический график прохождения контрольных точек на ней. Множество допустимых векторов ошибки — коридор допустимых отклонений от идеальной траектории с учетом отклонений по времени в прохождении контрольных точек на идеальной траектории.
Маневр может быть и условно устойчивым, то есть замкнутую систему удается перевести в конечное состояние с приемлемой точностью, но возмущающие воздействия (в том числе конфликтное управление) в процессе маневра плохо предсказуемы до его начала; вследствие этого траектория перехода должна корректироваться в ходе маневра с учетом реальных отклонений. Маневр может быть завершен при условии, что в течение перехода возмущающие воздействия не превысят компенсационных возможностей замкнутой системы. Это же касается ситуации конфликтного управления одним объектом со стороны нескольких субъектов.
Примером такого рода условно устойчивого маневра является любое плавание эпохи парусного флота “из пункта А в пункт Б”: доплыть — шансы есть, но об аварийности, сроках и маршруте можно говорить только в вероятностном смысле о будущем и в статистическом смысле — о прошлом. Политика также дает массу примеров такого рода маневров.
То есть безусловно устойчивый маневр имеет вероятность успешного завершения, обусловленную возмущающими воздействиями на замкнутую систему в его ходе, равную единице, которая однако может быть сведена к нулевой вероятностной предопределенности низкой квалификацией управленцев[33]. Вероятность приемлемого завершения условно устойчивого маневра подчинена объективно вероятностным предопределенностям возмущающего воздействия, характеристикам объекта, а субъективно — высокая квалификация субъекта-управленца может вытянуть до единичной предопределенности низкую вероятность осуществления условно устойчивого маневра. В этой формулировке под “возмущающим воздействием” следует понимать как внешние воздействия среды, включая и конфликтность управления, так и внутренние изменения (поломки и т. п.) в замкнутой системе. Этот пример также иллюстрирует соотношение понятий “устойчивость в смысле ограниченности отклонений” и в смысле предсказуемости поведения.
К маневрам перехода предъявляются разные требования, но наиболее часто предъявляется требование плавности, безударности, т. е. отсутствия импульсных (ударных) нагрузок на замкнутую систему в процессе её движения по идеальной траектории маневра с допустимыми отклонениями в пространстве параметров. В математической интерпретации это требование эквивалентно двукратной дифференцируемости по времени вектора состояния замкнутой системы и наложению ограничений на вектора-производные (“скорость”, “ускорение”) во всем пространстве коридора допустимых отклонений на протяжении идеальной траектории. Снятие этого требования — перенос задачи управления в область приложений