без ЭСУПС | с ЭСУПС | |||
Максимальная скорость, км/ч (Н=0) | 640 | Взлетный вес, кг | 2 150 | |
Максимальная скорость, км/ч (Н=6 км) | 740 | Размах крыла, м | 7,32 | |
Вертикальная скорость, м/с (Н=0) | 23,5 | Площадь крыла, кв.м | 7,32 | |
Практический потолок, м | 10 700 | Длина самолета, м | 8,27 | |
Скорость отрыва, км/ч | 215 | 125 | Тяга двигателя, кг | 900 |
Длина разбега, м | 560 | 200 | Тяговооруженность | 0,41 |
Взлетная дистанция до Нпр.=10 м | 770 | 295 | Нагрузка на крыло, кг/кв.м | 294 |
Посадочная скорость, км/ч | 200 | 115 | Время полета, ч | 1 |
Длина пробега, м | 670 | 220 | Максимальная эксплуатационная перегрузка | 6,85 |
Посадочная дистанция с Нпр.=15 м | 1 660 | 490 |
Первая же попытка испытать пневмосистему самолета под давлением обескуражила конструкторов. Готовились к ней тщательно, соблюдая все меры предосторожности. Высокое давление могло «раздуть» конструкцию, а предохранительного клапана, оттарированного на нужное давление, не было. Его тоже предстояло разработать. Решено было возле шланга, подававшего воздух в самолет, поставить Володю Филиппова с топором, чтобы в случае опасности перерубить шланг к чертовой матери. Каково же было удивление всей бригады, когда после подачи воздуха стрелка манометра даже не дрогнула. Несмотря на то, что пневмосистема самолета собиралась на герметике, она не держала давления. Не один месяц ушел на полное устранение негерметичности.
Прежде, чем ставить самолет в трубу, нужно было отработать действие ЭСУПС в «статике». После устранения потерь давления в подводке самолет «запел». Это вибрировали с высокой частотой обшивки, образующие щель. Кроме того, толщина щели в промежутках между креплениями увеличивалась под давлением вдвое. Двухмиллиметровые дюралевые обшивки пришлось заменить на трехмиллиметровые из нержавейки.
Особой тщательности потребовал подбор профилировки щели и взаиморасположения щели и закрылка. Для визуализации пространственного спектра обтекания и подтверждения прилипания струи к закрылку во всем диапазоне углов его отклонения были изготовлены специальные струбцины с шелковинками. Много времени было потрачено на обеспечение одинакового спектра обтекания механизации вдоль всего размаха крыла.
С помощью миниатюрных датчиков измерялось полное давление в подводящих трубопроводах и щели. Опыт газодинамических испытаний в ЦАГИ с конца 40-х годов был практически полностью забыт. Пришлось разыскивать старых специалистов, которые еще помнили методики проведения таких экспериментов и обработки результатов. Одним из таких специалистов был Азат Садгеевич Чутаев, оказавший существенную помощь.
Выяснилось, что сам самолет – едва ли полдела. Оказалось, что измерительная аппаратура ЦАГИ не позволяет обеспечить эксперимент. Например, производить одновременный замер давления в более чем тысяче точек поверхности самолета. Начать работу пришлось с создания этой аппаратуры.
Для визуализации поля скоростей за крылом была изготовлена решетка с шелковинками, которая могла устанавливаться на различных расстояниях за крылом, демонстрируя картину обтекания и влияние скоса потока на оперение.
В целом за время работы в ЦАГИ инженерами бригады МАИ было получено более двадцати авторских свидетельств на изобретения в области техники аэродинамических измерений.
При продувках любого самолета полный набор его аэродинамических характеристик в одной из конфигураций (крейсерской или посадочной) получается за один запуск трубы. Самолет прогоняется по всем углам скольжения на каждом из углов атаки с шагом в несколько градусов. Характеристики «Фотона» при каждом сочетании углов атаки и скольжения зависели также и от расхода воздуха в ЭСУПС. Таким образом, количество фиксируемых точек испытаний только за счет этого увеличивалось на порядок. А кроме этого, программа предусматривала исследование нескольких вариантов сменных модулей механизации передней и задней кромок крыла.