Существуют серно-натриевые и хлорно-литиевые аккумуляторы с удельной емкостью раз в десять, а то и в двенадцать большей, чем у свинцово-кислотных аккумуляторов. Натрий – металл, обладающий высокими энергетическими свойствами. В рабочем состоянии и натрий и сера нуждаются в подогреве, чтобы перейти в расплавленное состояние. Их разделяет сосуд из пористой керамики, изготовленной на основе алюминия. Главное свойство сосуда – его способность пропускать только ионы натрия. Для ионов серы и для атомов обоих химических элементов керамическая мембрана – непреодолимый барьер. Таким образом, керамика играет роль как бы твердого электролита. Но хотя натрий и сера плавятся при температуре 97-119 °C, для успешного протекания электрохимической реакции их нужно нагреть до 300 °C, не меньше. Правда, серно-натриевый аккумулятор требует постороннего источника тепла только для начала работы. Потом необходимая температура поддерживается за счет тепла, выделяющегося в ходе химической реакции.
Серно-натриевый элемент дешев. Применяемые в нем материалы не дефицитны. Во время работы из него не выделяются газы, значит, его можно герметизировать. А если добавить к этому еще и простоту заряда, то может показаться, что решение проблемы у нас в кармане. Но попробуем перечислить и недостатки. Сера и натрий – огнеопасны. А перед работой аккумулятор необходимо подогревать. Едкие вещества легко разъедают герметическую оболочку. И натрий так активно соединяется с водой, что эта реакция подобна взрыву. Да и расплавленная сера при контакте с воздухом образует ядовитый сернистый газ. Так что, несмотря на герметичность, такой аккумулятор требует большой осторожности при эксплуатации.
Похож и хлорно-литиевый аккумулятор, удельная энергоемкость которого еще выше. Но у него серьезным недостатком является ядовитость хлора. А ну как прорвется он где-нибудь!.. Конечно, бензин тоже не такое уж безобидное вещество, особенно если поблизости есть открытый огонь. Но к свойствам бензина все привыкли. А вот к характеру натрия и лития, хлора и серы мы относимся пока настороженно.
Тем не менее созданы очень любопытные «электрические консервы». Вот, например, литиево-никельгалоидный аккумулятор. В нем работает уже знакомый нам металл литий и неядовитое неорганическое фтористое соединение никеля. Этот аккумулятор не требует подогрева, не выделяет газ, что позволяет сделать его полностью герметичным. Энергоемкость его – на уровне супераккумуляторов, описанных выше, а процесс зарядки длится всего несколько минут. Прекрасно, не правда ли? Вот мощность его невелика. Но не будем забывать, что и современная техника сильно миниатюризировалась.
Существуют воздушно-цинковые аккумуляторы, в которых кислород атмосферы окисляет цинковый анод. В них запас энергии определяется количеством цинка, способного вступить в реакцию. Но у них пока мал срок службы. Идея использовать воздух в качестве одной из составляющих системы накопителя энергии очень заманчива, хотя реализовать ее нелегко.
Интересное и перспективное направление – разработка топливных элементов. Правда, некоторые исследователи считают, что эти системы, занимающие промежуточное положение между гальваническими элементами и аккумуляторами, относятся скорее к электрическим машинам. Они их так и называют: электрохимические генераторы (ЭХГ). В топливных элементах свободная энергия электрохимической реакции переходит непосредственно в электрическую энергию. Вот, например, как работает водородно-кислородный топливный элемент: газ водород поступает из баллона-термоса, где хранится в сжиженном состоянии, к отрицательному электроду-катализатору. Здесь он ионизуется. Точно так же к положительному электроду поступает кислород. Ионы водорода проходят через ионообменную мембрану, соединяются с ионами кислорода. Образовавшаяся в результате реакции вода – единственный «выхлоп» такого элемента-генератора. Заманчивая перспектива, не так ли? Тем более что в качестве топлива может применяться не только сжиженный водород, но и другие вещества.
Потребность в разработке новых аккумуляторов особенно остро проявилась в 70-е годы XX века в связи с внедрением в космической технике солнечных батарей. Для налаживания выпуска специальных серебряно-цинковых аккумуляторов технологам пришлось создать не только новые конструкции, но и новые материалы, и электролиты.