В серебряно-цинковых аккумуляторах отрицательный электрод, как и полагается, сделан из цинка, а положительный – из окиси или перекиси серебра. Электролитом служит едкое кали. Энергоемкость таких аккумуляторов раз в шесть больше, чем у свинцовых. Кроме того, они могут работать при достаточно низких (до -60 °C) температурах, давать сильные токи и долгое время находиться в разряженном состоянии.
В результате были получены аккумуляторы, которые могут работать длительное время, в том числе в буферном режиме и в весьма жестких условиях космоса. В 80-е годы XX века для межпланетной станции «Венера» и программы спускаемого аппарата «Союз» потребовались герметичные буферные батареи, устойчивые не только к условиям открытого космоса, но и способные выдерживать серьезную ударную нагрузку. Еще более жесткие требования были предъявлены к аккумуляторам для обеспечения питания аппаратуры на космических станциях «Союз» и на спутниках серии «Космос». Эти работы велись как в Советском Союзе, так и в США. Велись параллельно и примерно в едином темпе. В долгосрочных космических программах «Венера», «Марс», «Молния», «Салют», равно как и в американских: «Маринер», «Пионер», «Эксплорер», – использовались в основном герметичные никель-кадмиевые аккумуляторы со сроком службы в несколько лет, что особенно важно для межпланетных полетов.
Огромную работу проделали наши специалисты по энергообеспечению космической системы «Энергия-Буран». Ракетчики потребовали от электриков создания аккумуляторов рекордной емкости до 130–140 А · ч при удельной энергии до 150 В · ч на килограмм веса. Таких параметров мировая практика раньше не знала. И тем не менее подобные аккумуляторы были созданы на Государственном научно-производственном предприятии «Квант».
На космических аппаратах «Радуга» и «Горизонт» прошли испытания новые никель-водородные аккумуляторы со сроком службы до пяти лет, и специалисты «Кванта» работают над созданием еще более долгодействующих никель-водородных и никель-металлгидридных аккумуляторов.
Интересным направлением современной научно-технической мысли является возможность использования в сверхпроводящих катушках больших значений электрического тока, а следовательно, и впечатляющего запаса электроэнергии.
Глава 7. Три кита электротехники
«Электрический конфликт» Ханса Эрстеда
Компасные мастера XVII века не раз замечали, что у кораблей, пришедших из дальних плаваний и побывавших в жестоких грозовых бурях, компасные стрелки оказывались перемагниченными. Северный конец указывал на юг, а южный – на север. «Что за чудо?» – удивлялись они, перекрашивая или меняя испорченные стрелки на «правильные». Никому, конечно, и в голову не приходило связать «болезнь перемагничивания компасной стрелки» с атмосферным явлением, а точнее – с молнией. Но вот жарким грозовым днем в июне 1731 года молния ударила в дом почтенного купца города Уэкфилда. Услышав грохот, испуганный негоциант вбежал в комнату и обнаружил, что громовая стрела разбила ящик со столовыми приборами. Стальные ножи и вилки разлетелись по всей столовой. Когда прислуга принялась их подбирать и складывать в буфет, оказалось, что ножи и вилки намагничены. И случай явно указывал на то, что причиной явления могла быть… только молния. А что такое молния? На дворе, слава богу, XVIII век. Просвещенные люди увлекаются науками и знают, что молния – это всего-навсего огромная электрическая искра.
7 сентября 1753 года в Санкт-Петербургской императорской академии профессор Эпинус прочел на конференции трактат «О сходстве электрической силы с магнитною». В своем фундаментальном труде «Опыт теории электричества и магнетизма», изданном шесть лет спустя, господин Эпинус утверждал, что между электрическими и магнитными явлениями существует непременная связь и силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадрату расстояния между ними…
Сам Алессандро Вольта высоко оценил работы петербургского академика. А уж кому бы этого не знать… Интресно, что английский химик Гемфри Дэви, соорудив гигантский вольтов столб, состоящий из двух тысяч пар пластин, и получив электрическую дугу, обнаружил, что пламя дуги отклоняется магнитом. Правда, это было не совсем то. Пламя есть пламя. А вот подтвердить строгим физическим опытом подозреваемую связь электричества с магнетизмом не удавалось никому из физиков.