ВЫЧИСЛЕНИЕ КВАДРАТОВ В УМЕ
Так как (n
± 1)2 — n2 ± 2n + 1, квадрат целого числа можно вычислить в уме, зная квадрат предыдущего или следующего числа:312
= 302 + 2·30 +1 = 900 + 60 + 1 — 961.192
= 202 - 2·20 + 1 = 400 — 40 + 1 = 439.Так как n
2 = а2 + n2 — а2 = а2 + (n + а)·(n — а), квадрат целого числа также можно определить через произведение его суммы и разности с другими числами, которое несложно вычислить:192
= 1 + (192 - 12) = 1 + (19+1)·(19-1) = 1 + 20·18 = 1 + 360 = 361.372
= 9 + (372- З2) = 9 + (37 + 3)·(37 — 3) = 9 + 40·34 = 9 + 40·(30 + 4) = 9 + 40·30 + 40·4 = 9 + 1200 + 160 = 1369.* * *
Торг был и остается общепринятой торговой практикой. Хотя в западном мире он практически ушел в прошлое, в других регионах торг по-прежнему сохраняется на традиционных рынках и в излюбленных туристами местах.
Цель торга — прийти к соглашению относительно цены, которая устроит и продавца, и покупателя. Как правило, торг начинает продавец: он называет цену, которую должен заплатить покупатель. Часть игры заключается в том, что изначальная цена всегда завышена (порой — слишком завышена), и покупатель должен в ответ назвать другую, более низкую цену. При этом он не должен сбивать ее слишком сильно, чтобы продавец не почувствовал себя оскорбленным и не потерял интерес к покупателю.
Неписанное правило торга на традиционных рынках заключается в том, что справедливой ценой можно считать цену, равную половине первоначальной. Но это правило выполняется не всегда — порой продавец сам приглашает покупателя назвать цену первым.
Чаще всего цена при торге меняется на некоторую фиксированную величину, но покупатель и продавец могут договориться о скидке в процентах. Если покупателю предложили скидку в 5 %, ему не следует ожидать, что он сможет выторговать скидку в 50 %, то есть приобрести товар за полцены. В этом случае торг можно считать успешным, если покупателю удается удвоить названную скидку, то есть сбавить 10 % от цены. Скидки обычно предлагаются на довольно дорогие товары, так что даже небольшое изменение цены в процентном отношении предполагает существенную экономию, поэтому такой вид торга встречается не очень часто.
Наиболее простая математическая модель торга — это линейная модель. В ней цены, предлагаемые продавцом и покупателем, изменяются пропорционально. При всей своей простоте эта модель неточна: в реальной жизни предлагаемые цены увеличиваются и уменьшаются неравномерно, и по мере приближения к соглашению цена изменяется все меньше.
Более точной кажется модель, в которой графики изменения цены представляют собой кривые. Кривая цены, предлагаемой покупателем,
Если считать, что результатом увеличения
Однако мы не знаем, действительно ли участники торга рассуждают подобным образом. Быть может, они думают, что цену следует повышать или понижать обратно пропорционально разнице с исходной ценой? Если это так, то мы получим новую модель, в которой поведение продавца и покупателя описывается логарифмическими функциями — именно эти функции являются решениями дифференциального уравнения модели. Обозначив через
Постоянная
Но на самом деле люди, предлагая свою цену, не вычисляют в уме подобные пропорциональные величины. Рассмотрим реальные данные, собранные автором по результатам торга с тремя продавцами, чей доход напрямую зависел от туристов.