Пропорциональны ли две параллельные кривые? Параллельны ли две пропорциональные кривые?
В случае с ломаными линиями понятия параллельности и пропорциональности эквивалентны, так как любая ломаная есть часть многоугольника, а стороны подобных многоугольников параллельны. Это же верно и для дуг окружности. В таких случаях мысленное представление параллельных и пропорциональных кривых одинаково. Впрочем, если мы рассмотрим предельный случай, то заметим, что интуитивные представления о параллелизме и пропорциональности отличаются. К примеру, две следующие кривые параллельны в том смысле, что перпендикуляр, проведенный к первой из них в любой ее точке, будет перпендикуляром и ко второй, а часть этого перпендикуляра, заключенная между кривыми, всегда будет иметь одинаковую длину — иными словами, эти кривые располагаются на одинаковом расстоянии друг от друга. Но ни одна из них не является уменьшенной или увеличенной копией другой, как в случае с пропорциональными кривыми.
На следующем рисунке можно четко увидеть, чем отличается исходная кривая или ломаная от линии, параллельной ей и расположенной на определенном расстоянии. Существуют две траектории, или кривые, параллельные углу прямоугольника, — внешняя и внутренняя. На внешней траектории угол исчезает, на внутренней образуется петля.
Продолжение описанной выше задачи можно увидеть в решетке церкви Сан-Феликс в городе Сабадель: в каждую из четырех внутренних окружностей вписано еще по четыре окружности.
Вы видите окружность, в которую вписаны четыре окружности меньшего размера, касающиеся друг друга. Их центры определяют квадрат. В каждую из четырех окружностей вписано еще четыре окружности по такой же схеме. Если мы продолжим неограниченно вписывать окружности по этому правилу, получим последовательность. Общее число окружностей в этой последовательности, С
(C
(Однако мастеров интересовало не столько число окружностей, сколько соотношение между их радиусами. Если мы обозначим через
2
Подобная задача приведена в последней из обнаруженных на сегодняшний день сайгаку (мы уже говорили, что эта табличка была найдена в городе Тояма в 2005 году). Задача заключается в том, чтобы определить соотношение между
Как видите, в Средние века математическая мысль существовала не только в Старом Свете. Архитектурные стили в самых разных частях мира строятся на диалоге круга и квадрата, поскольку эти геометрические фигуры играют главную роль во всех культовых сооружениях. На основе круга и (или) квадрата, параллельных и перпендикулярных прямых построены египетские пирамиды, вавилонские зиккураты, храмы, мавзолеи и другие религиозные сооружения.
Также на основе квадратов и кругов создаются самые разные трехмерные фигуры — полусферы буддийских ступ в Индии и Непале, увенчанные кубами, ступенчатые пирамиды доколумбовой Америки и даже спираль, устремленная в небо, в исламских мечетях Ближнего Востока.
Способ выражения верований — важнейшая часть культуры. Архитектура придает отношениям человека с богами осязаемую форму, и в религиозной архитектуре особую роль играет математика. В некоторых культурах математика также определяет обряды для верующих всех социальных групп. Например, на острове Бали женщины каждый день изготавливают емкости для подношений богам в форме различных геометрических фигур. При этом островитяне на практике воплощают математические идеи, воспринятые от родителей. Это знания, передаваемые из поколения в поколение, не связаны с формальной академической средой.
Человек, уважающий богов, не действует наобум. Он со всем тщанием подходит и к строительству храмов, и к посуде для подношений — если есть в жизни место совершенству, то именно в сфере религии. В свете всего вышесказанного можно утверждать, что совершенство во всех культурах связывается с геометрией, а математические идеи, созданные в разных культурах и описывающие эту взаимосвязь, объединяются понятием «этноматематика».
Глава 4
Как геометрия делает красивое прекрасным