Читаем Мир математики. т 40. Математическая планета. Путешествие вокруг света полностью

Ее витки направлены вокруг оси. Спираль опирается на ось только в начальной и конечной точке. Углы при вершинах спирали почти прямые и образуются скручиванием волокна на пол-оборота до сгиба. Волокна листьев переплетены, как показано на следующей схеме. Угол а определяет угол между двумя последовательными вершинами (он равен 180° — ) и число секторов на каждом обороте спирали.



Будем повторять аналогичные действия, и поверхность примет следующий вид.



Плетеная спираль, вид сверху.


В Японии верующие вешают у входов в синтоистские святилища и алтари деревянные таблички, на которых записывают свои пожелания и просьбы. Студенты просят об успешной сдаче экзамена, семьи и супружеские пары — о счастливом браке, а коммерсанты — об удаче в делах.

В XVII–XVIII веках в Японии можно было видеть удивительный математический феномен: на алтарях вешались сайгаку — большие деревянные таблички с математическими задачами, как правило по геометрии. Одни из них были простыми, другие, напротив, очень сложными. Эти задачи придумывали и решали монахи, самураи и представители других социальных групп. Древнейшая сайгаку датирована 1691 годом и хранится на алтаре Гион в городе Киото. Последняя сайгаку была найдена в 2005 году в алтаре Убара в городе Тояма и датируется 1879 годом.

Хотя задачи сайгаку решаются по большей части евклидовыми методами, сами эти таблички как разновидность неакадемической математической деятельности, связанная с культурной традицией, подтверждают важность культурного контекста, в котором сплавляются воедино математика и творчество. При этом сама творческая деятельность, то есть формулировка задач и поиск решений, носит ярко выраженный этноматематический характер.



Таблички у входа в храм Хида Кокубундзи в Такаяме.


Чаще всего в сайгаку речь идет о вписанных геометрических фигурах. К примеру, требуется определить отношение радиусов трех окружностей, касающихся друг друга и вписанных в еще одну, большую окружность; определить размеры квадратов, вписанных в равносторонний треугольник; вписать ряд окружностей в эллипс или ряд сфер в большую сферу.

В 1781 году Фудзита Садасуке написал книгу «Математика в деталях» и помог своему сыну Каджену подготовить первую книгу, посвященную сайгаку. Она получила название «Священная математика» и была опубликована в 1789 году. В книге Фудзиты Садасуке приведен простой вариант задачи, где нужно найти расстояние между двумя точками, в которых окружности, касающиеся друг друга, касаются прямой.



Обозначив радиусы окружностей через и r, искомое расстояние — через d и применив теорему Пифагора, имеем:

(R — r)2 + d2 = (R + r)2 => d = (R·r)

Интерес вызывает не задача сама по себе, а ее связь с пифагоровыми тройками.

Тройка целых чисел называется пифагоровой, если эти числа удовлетворяют теореме Пифагора, то есть квадрат одного из них равен сумме квадратов двух других. К примеру, пифагоровыми являются тройки (3, 4, 3), (6, 8, 10), (5, 12, 13) и (119, 120, 169). Пифагорова тройка называется примитивной, если два меньших числа в ней взаимно простые. Примитивными являются тройки (3, 4, 3), (5, 12, 13) и (119, 120, 169), но не (6, 8, 10), так как 6 и 8 — четные числа.

В еще одной задаче из книги Садасуке требуется доказать, что тройка чисел (а, b, с) пифагорова, если p и одновременно не являются нечетными и удовлетворяют следующим соотношениям:

а = 2pq

b = p2q2

c = p2 + q2.

Значение а очень похоже на ответ к предыдущей геометрической задаче. Чтобы значение а было ответом к предыдущей задаче, необходимо, чтобы квадратные корни радиусов R и r были целыми числами. Допустим, что это в самом деле так: R = р2, r = q2. Предположим, что разность R — r равна другому целому числу, s.

Тогда следующая тройка чисел будет примитивной пифагоровой тройкой:

2pq = d

р2q2 = R — r

p2 + q2 = R + r.

Таким образом, алгебраическая задача о пифагоровых тройках эквивалентна геометрической. По всей видимости, таков традиционный японский метод определения примитивных пифагоровых троек. Наконец, еще в одной задаче требуется найти все примитивные пифагоровы тройки для радиуса r <= 41. Решения этой задачи таковы:

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (12, 35, 37), (20, 21, 29), (9, 40, 41).

Если мы построим между двумя описанными выше окружностями еще одну, то получим интересную задачу — она приводится в сайгаку 1873 года, подвешенной на алтаре Катаямахико в префектуре Окаяма. Каким отношением связаны радиусы трех окружностей, касающихся друг друга и прямой, на которую они опираются?



И вновь к решению нас приведет теорема Пифагора. Пусть радиусы окружностей удовлетворяют соотношению r1 > r2r3 которое мы узнаем, применив теорему Пифагора. Для этого выделим треугольник, образованный вершинами окружностей и радиусами, которые проведены к общей касательной к окружностям.



Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже