Все подобные органы рыб, вне зависимости от специализации, чувствительны и к давлению, и к электричеству. Органы боковой линии, которые в основном чувствуют потоки воды, реагируют и на электрические стимулы, а ампулы Лоренцини, в основном засекающие электрические токи, реагируют и на механическое давление. Таким образом, морские биологи в свое время считали, что пьезоэлектричество играет важную роль в работе и боковой линии, и уха[456]
. Ханс Лиссман, когда-то самый выдающийся в мире специалист по электрическим рыбам, считал, что это так. Позже анатом Мюриэл Росс, получившая грант от NASA для исследования воздействия невесомости на уши, подчеркивала, что отолиты рыб и родственные им отоконии («волосковый песок») в гравитационных сенсорах наших ушей являются пьезоэлектриками. Механическая и электрическая энергия, утверждала она, взаимозаменяемы, а обратная связь между волосковыми клетками и пьезоэлектрическими мембранами преобразует одну форму энергии в другую.В другом связанном с этим исследовании 1970 г. Деннис О’Лири подверг желеобразные купулы полукруглых каналов лягушек – органов равновесия во внутреннем ухе – воздействию инфракрасного излучения. Реакция волосковых клеток в каналах соответствовала электрической, а не механической модели этих органов.
Недавно ученые доказали, что внешние волосковые клетки улитки сами по себе являются пьезоэлектриком. Они накапливают напряжение, реагируя на давление, а также удлиняются и укорачиваются при воздействии электрического тока. Их чувствительность невероятна: тока силой в один пикоампер (одну триллионную часть ампера) достаточно, чтобы длина волосковой клетки изменилась на измеримую величину[457]
. Электрические токи, курсирующие сложными путями, обнаружили также в текториальной мембране и кортиевом органе[458]. А в маленьком пространстве между верхушками волосковых клеток и нижней частью текториальной мембраны были обнаружены пульсирующие волны, которые отражаются между внешними волосковыми клетками, текториальной мембраной и внутренними волосковыми клетками[459]. Австралийский биолог Эндрю Белл рассчитал, что в человеческой улитке эти волны жидкости должны иметь длину от 15 до 150 микрон (миллионных частей метра) – именно такой размер нужен, чтобы волосковые клетки длиной 20–80 микрон вошли в музыкальный резонанс. Белл сравнил эти волны с поверхностными звуковыми волнами, а кортиев орган – с резонатором на поверхностных акустических волнах, популярным электронным устройством, которое пришло на смену кристаллам кварца во многих отраслях промышленности.В электрической модели слуха, созданной этими учеными, описано несколько мест, где электричество воздействует непосредственно на ухо. Внутренние волосковые клетки – электрорецепторы. Внешние волосковые клетки – пьезоэлектрики. Текторальная мембрана – пьезоэлектрик. И, поскольку на эти структуры может воздействовать как постоянный, так и переменный ток, многие ранние сообщения об услышанном электричестве – в том числе и те, которые списывали просто на «вибрации кожи», – нужно заново переоценить, утверждал Оффутт.
Именно тончайшей чувствительностью кортиева органа к электричеству объясняются как сообщения XIX в. о возможности слышать постоянный ток, так и сообщения XX в. о возможности слышать переменный ток. А еще мы теперь можем лучше понять, почему же полвека назад так страдала клиентка Кларенса Виске из Санта-Барбары и почему миллионы людей страдают сейчас. Тем не менее одного кусочка слуховой «мозаики» все еще не хватает.
Чтобы стимулировать слух, необходимо приложить к ушному каналу постоянный или переменный ток с силой примерно один миллиампер (одна тысячная ампера)[460]
. Если же электрод поместить прямо в жидкость улитки, достаточно одного микроампера (миллионной части ампера)[461]. Если ток прикладывать непосредственно к волосковой клетке, то даже ток в один пикоампер (одну триллионную часть ампера) вызывает механическую реакцию[462]. Очевидно, совать электроды в наружное ухо – неэффективный способ стимуляции волосковых клеток. Их достигает лишь очень малая часть приложенного тока. Но в современном мире электроэнергия добирается до волосковых клеток напрямую, в виде радиоволн, для которых кости и мембраны прозрачны. Волосковые клетки еще и купаются в электрических и магнитных полях, излучаемых линиями электропередачи и электроприборами, которые подключены к ним. Все эти поля и радиоволны проникают во внутреннее ухо и индуцируют электрический ток внутри улитки. Возникает другой вопрос: почему же мы все тогда не слышим постоянной какофонии звуков, заглушающих любые разговоры и музыку? Почему бо́льшая часть электрического шума ограничена либо очень низкими, либо очень высокими частотами? Ответ, скорее всего, связан с той частью уха, которая обычно не ассоциируется со слухом.Как услышать ультразвук