Когда ученые убедились, что сигналы, вызывающие регенерацию, являются электрическими, а не химическими по своей природе, их ждал еще один сюрприз. Оказалось, что потенциалы постоянного тока, которые, как мы только что убедились, необходимы не только для регенерации, но и для роста, заживления ран, восприятия боли и даже сознания, вырабатываются не в «настоящих» нервах, а в миелинсодержащих клетках, которые их окружают, – в клетках, которые содержат порфирины. Доказательство этому было получено случайно: опять-таки, когда Беккер пытался разрешить загадку, почему некоторые переломы не срастаются. Поскольку он уже знал, что нервы необходимы для заживления, он попытался в начале 1970-х гг. создать животную модель для несрастающихся переломов: он пересекал у крыс нервы, ведущие к ногам, а потом ломал их.
К его удивлению, кости все равно срастались нормально, но с задержкой в шесть дней. Но шести дней же явно недостаточно, чтобы у крысы полностью регенерировали нервы. Могут ли кости быть исключением из правила, что для заживления ран необходимы нервы? «А затем мы внимательнее рассмотрели подопытных животных, – писал Беккер. – Оказалось, что в течение этих шести дней над разрезом росли оболочки из шванновских клеток. Как только перинейрональная оболочка восстановилась, кости начали нормально заживать; это показывает, что по меньшей мере сигнал заживления – выходной сигнал – передается оболочкой, а не самим нервом. Клетки, которые биологи считали простой изоляцией, на самом деле оказались проводами»[250]
. Беккер пришел к выводу, что именно шванновские клетки – миелинсодержащие глиальные клетки, – а не нейроны, которые окружены ими, передают токи, которые влияют на рост и лечение. А в намного более раннем исследовании Беккер уже показал, что постоянные токи, которые передаются по ногам саламандр – и, предположительно, по конечностям и телам всех высших животных, – имеют полупроводниковую природу[251].Вот круг и замкнулся. Миелиновые оболочки – жидкокристаллические «рукава», окружающие наши нервы, – содержат полупроводники-порфирины[252]
, легированные атомами тяжелых металлов, скорее всего – цинка[253]. Первыми, кто предположил, что эти порфирины играют важную роль в проводимости нервов, стали Харви Соломон и Фрэнк Фигг в 1958 г. Выводы из этих предположений особенно важны для людей с химической и электромагнитной чувствительностью. У тех из нас, кто по генетическим причинам обладает сравнительно меньшим запасом одного или нескольких порфириновых ферментов, может быть более «нервный темперамент», потому что в нашем миелине чуть больше цинкового «допинга», чем обычно, и его легче побеспокоить электромагнитными полями (ЭМП), окружающими нас. Токсичные химикаты и ЭМП, соответственно, работают в синергии: контакты с токсинами еще сильнее нарушают работу порфириновых сигнальных путей, вызывая накопление еще больших объемов порфирина и его молекул-предшественников и делая миелин и нервы, окруженные им, еще чувствительнее к ЭМП. По данным более современных исследований, большой избыток предшественников порфирина может помешать синтезу миелина и разрушить миелиновые оболочки, оставив нейроны совершенно голыми и незащищенными[254].Реальная ситуация, без сомнений, куда сложнее, но для того, чтобы сложить весь этот «пазл», понадобятся ученые, которые готовы снять культурные шоры и признать существование линий электропередачи в нервных системах животных. Научный истеблишмент уже сделал первый шаг, наконец-то признав, что глиальные клетки – это не просто упаковочный материал[255]
. Собственно говоря, открытие, сделанное командой ученых из Университета Генуи, произвело настоящую революцию в неврологии. Их открытие связано с дыханием[256].