Читаем Мир вокруг нас полностью

Структура протонизбыточных изотопов кислорода — не несёт специфики, и может быть понята из уже рассмотренных изотопов более лёгких элементов: Так, кислород-12 — является аналогом азота-11, о чём свидетельствуют почти одинаковые времена полужизни этих изотопов (азот-11 — 550x10–24 сек, кислород-12 — > 630x10–23 сек). Сравнение их строения — показано на рис. 89.



Рис. 89


В обоих изотопах имеется спаривание нейтронов, в частности, в дейтериевых кластерах, и т. о. увеличение связанности протонов с этими нейтронами (подобно тому, как это имело место в бериллии-8). В кислороде-12 — протоны уравновешивают смещение кварковой плотности, производимое друг другом, что как уже говорилось ранее, выгодно, и может объяснять, почему этот изотоп живёт дольше, чем азот-11, несмотря на больший избыток протонов над нейтронами.

Кислород-13 — см. на рис. 90. В своей вероятной конфигурации, ядро кислорода-13, как видно, схоже по строению с азотом-12, что подтверждается почти одинаковыми временами их жизни (11 мс — у азота-12, 8,58 мс — кислород-13), и схожими каналами распада (см. табл. 9 и 10).



Рис. 90


В то же время, имеется огромное различие во временах полужизни изотопов кислорода-12 и кислорода-13 (см. табл. 10). Как видно из рис. 90 — это обусловлено переконфигурацией нуклонов в ядре, приводящей к усилению связи протонов, из-за появления нейтронов в базовом положении, в кислороде-13, и очевидной (из геометрии) невозможностью этого у кислорода-12 (рис. 89), с учётом того, что кислород-12, как и любое ядро с чётным числом (одновременно) и протонов и нейтронов (т. е. чётно-чётное ядро) — должно подчиняться, упоминавшемуся ранее, требованию: иметь симметричные друг к другу, верхнюю и нижнюю части (это осуществимо лишь в конфигурации 12O без нейтронов на базовом уровне, = на рис. 89).

Остальные протонизбыточные изотопы кислорода — показаны на рис. 91. На этих изотопах, подробно останавливаться не будем (спины этих изотопов, и выгода представленных конфигураций — могут быть поняты из аналогии с уже рассмотренными изотопами более лёгких элементов). При этом, как видно, кислород-15 — схож по структуре с кислородом-14 (что подтверждается близостью времён жизни этих изотопов, и одинаковыми каналами распада (см. табл. 10)).



Рис. 91


Далее: Первым известным (протонизбыточным) изотопом элемента фтора — является фтор-14, см. табл. 11. Показательно, что неизвестно изотопа фтора-13, хотя последний продолжал бы ряд изотопов предыдущих элементов: литий-4 — бор-7 — азот-10 (эти ядра — имеют одностороннее расположение нуклонов, т. е. механизм лития-4, и рассматривались ранее). Отсутствие фтора-13 — объясняется (геометрической) невозможностью добавления трёх нуклонов (нейтрона и двух протонов), составляющих шаг в представленном выше ряду ядер, к азоту-10 так, чтобы получалось ядро с односторонним расположением нуклонов, см. рис. 92. На рис. видно, что протоны — мешают расположению друг друга геометрически. Хотя это не исключает возможности существования фтора-13 в другой конфигурации, но очевидно, делает это ядро на порядок менее выгодным, чем литий-4, бор-7 и азот-10, объясняя, почему этот изотоп фтора до сих пор неизвестен.


Таблица 11 [8]

Протоноизбыточные изотопы фтора





Рис. 92


Фтор-14 (как уже говорилось, первый известный изотоп фтора) — рассмотрим, для удобства, не в основном, а в (первом) возбуждённом (= почти основном) состоянии (со спином 1) [21], т. к. в этом случае, как увидим далее, переход к следующим протонизбыточным изотопам фтора (15 и 16) — проще (не требует переконфигурации нуклонов). Вероятное строение первого возбуждённого состояния ядра фтора-14 — см. на рис. 93. Второе возбуждённое состояние этого ядра, имеющее спин 3 [21] — можно представить в виде конфигурации с односторонним расположением нуклонов, см. рис. 94. Как видно, механизм лития 4, при переходе от азота ко фтору — возможен, но требует добавления ещё одного нейтрона (только в этом случае, отсутствуют протоны, мешающие расположению друг друга геометрически).



Рис. 93



Рис. 94


Следующий изотоп фтора, фтор-15 — показан на рис. 95. Малое время жизни этого изотопа (410x10–24 сек), и распад с вылетом протона — легко понять из представленной на рис., структуры данного ядра.



Рис. 95


Следующий изотоп, фтор-16 — примечателен спином 0, очень редким для ядер с нечётным числом протонов. Вероятное строение ядра 16F — см. на рис. 96.



Рис. 96


Фтор-17 — показан на рис. 97.



Рис. 97


Перейти на страницу:

Похожие книги

Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука