Итак, уже из плоских представлений элементарных частиц, наглядно видно, что и электрон, и протон, и нейтрон — переходят в свои античастицы, при зеркальном отражении.
Аналогично, частицы ведут себя и в объёмном представлении, см. рис. 104.
Рис. 104
Итак, это некоторые основы представлений о чётности, на постнеклассическом этапе.
Далее, говоря про чётность, рассмотрим такие явления, связанные с чётностью как: проблема нейтрино, нарушение CP-чётности, и закон сохранения чётности следующего уровня — CPT-чётности:
Проблема нейтрино, т. е. нарушение P-чётности для нейтрино, или почему нейтрино всегда имеет спин –1/2 (вернее, отрицательную спиральность, но о ней — чуть позже), и почему не существует его зеркальное отражение, т. е. нейтрино со спином +1/2, согласно наглядным (постнеклассическим) представлениям — легко объясняется: Как уже рассматривалось ранее, т. к. отличие частиц от античастиц (в т. ч. различие зарядов), согласно наглядным представлениям, обусловлено разным направлением замкнутых движений в частице, т. ч. на магнитной оси, то нейтрино с противоположным направлением замыкания — оказывается антинейтрино. Проведём операцию зеркального отражения нейтрино, см. рис. 105. Из рис. видно, что при зеркальном отражении, нейтрино — очевидно переходит т. о. в антинейтрино.
Рис. 105
При более подробном рассмотрении, следует также учесть, что нейтрино всегда движется со скоростью света, а значит, важен не спин сам по себе, а его проекция на направление движения, или спиральность. Посмотрим, как ведёт себя нейтрино при зеркальном отражении, с учётом направления движения (показано вертикальной стрелочкой), см. рис. 106. Как видно из рис., если направление замыкания, при зеркальном отражении меняется на противоположное, то направление движения не меняется, и наоборот. Очевидно, что частицы в средней части рис. — тождественны, и представляют собой антинейтрино.
Рис. 106
Нарушение CP-чётности, и сохранение CPT-чётности — формулируется как необходимость, для сохранения инвариантности физических законов — производить инверсию не только пространства, с заменой частиц на античастицы (CP-преобразование), но одновременно менять и направление течения времени (T-инверсия). Последняя — есть смена всех движений на противоположные (при этом, изменение внутренних движений, неклассически — не учитывается (т. к. неизвестно), но содержится (кроме спина) в CP-преобразовании, т. е. замене частиц на античастицы). Из сохранения CPT-симметрии — выводится равенство масс, времён жизни и т. п. характеристик частиц и античастиц, что установлено (экспериментально) с высокой степенью точности [24]. (Наглядно, тождественность частиц и античастиц, и противоположность их зарядов — можно увидеть как следствие того, что всё отличие частиц / античастиц — лишь в противоположном направлении движений в них).
Нарушение CP-симметрии (наблюдаемое в распадах K0
- и B0-мезонов) — было в целом объяснено ещё на неклассическом этапе, как вытекающее, в конечном итоге, из наличия трёх поколений элементарных частиц (и обусловленного этим, смешивания кварков в мезонах (детали — опускаем)). Сама же причина наличия поколений элементарных частиц — выясняется лишь на постнеклассическом этапе, и (наглядно) рассматривалась ранее.Далее:
Чётность квантовых состояний ядер
Ядра (в т. ч. возбуждённые состояния одного и того же изотопа) — могут иметь одинаковые спины, но разный знак чётности. Такие ядра — обязаны иметь различающуюся внутреннюю структуру. Попробуем выяснить связь чётности со структурой ядер, в упрощённом виде (т. е. лишь сравнивая структуры ядер между собой):
Для начала, обратим внимание, что все ядра с чётным числом протонов и нейтронов (= геометрически полностью симметричные, или как уже говорилось, чётно-чётные ядра) — всегда имеют положительную чётность, во всей таблице Менделеева: отрицательные чётности в таких ядрах — взаимно компенсируются («минус, умноженный на минус — даёт плюс»). Пример: если соединить два ядра лития-4 с противоположными спинами и отрицательной чётностью, то получим углерод-8 с положительной чётностью, см. рис. 107.
Рис. 107
Итак, все ядра, симметричные относительно плоскости, делящей ядро на верхнюю и нижнюю части (тут — половины), — обладают положительным знаком чётности.
В отношении ядер, не являющихся чётно-чётными, рассмотрим ряды таких ядер, с последовательным изменением знака чётности при добавлении или удалении нуклонов. Первый подобный ряд ядер — представлен в табл. 13 и на рис. 108. Как видно, при добавлении протона, отрицательные чётности то компенсируют друг друга, то не компенсируют, поэтому чётности соседних ядер — оказываются противоположны. Важно, что переход между ядрами в представленном ряду осуществляется без значимой переконфигурации нуклонов (ядер). Поэтому знак чётности меняется закономерно.
Ряд ядер, с последовательным изменением знака чётности