Читаем Мир вокруг нас полностью

Т. о. мы рассмотрели все стабильные ядра в первых двух рядах таблицы Менделеева (в общем, 20 ядер), и два почти стабильных ядра (бериллий-10 и углерод-14). Рассмотренных примеров — вероятно, должно быть вполне достаточно, для общего представления о стабильных ядрах и причинах стабильности.

Итак, переходим к следующему вопросу:

Об энергетических уровнях в ядрах

Нуклоны в ядре — различаются по энергии, т. к. геометрически не могут располагаться все одновременно на базовом уровне, т. е. поместиться в одну альфа-частицу. Добавляемые нуклоны, поэтому — располагаются выше и дальше от базовых. При этом, естественно предположить, что нуклоны, расположенные на одном расстоянии — одинаковы по энергии, т. е. должны принадлежать одному энергоуровню. Рассмотрим, каким образом располагаются энергетические уровни в атомном ядре, в связи с наглядной геометрией (частично, мы уже касались этого вопроса):

Самый первый, т. е. базовый энергетический уровень — впервые полностью заполнен, как уже отмечалось, в ядре гелия-4 (альфа-частице): об этом свидетельствует, помимо всего прочего, полностью замкнутая форма этого ядра. Как увидим далее, каждый заполненный более высокий энергетический уровень — тоже соответствует геометрически замкнутой форме ядра (углерод-8, неон-20 и т. д.).

Последовательное заполнение базового энергетического уровня, как несложно догадаться — происходило в последовательности следующих изотопов: водород, дейтерий, тритий / гелий-3, и заканчивается гелием-4. Всего, на базовом энергетическом уровне, могут находиться т. о. 4 нуклона — два протона и два нейтрона.

Следующий, после базового, второй по счёту, энергетический уровень — впервые полностью заполнен в ядрах углерода-8 и водорода-7, но только в углероде-8, этот уровень заполнен 4 протонами, а в водороде-7 — 4 нейтронами, см. рис. 132. Это и определяет свойства данных ядер, а также почему изотопы водорода заканчиваются на водороде-7, и изотопы гелия, с повышенной стабильностью, соответственно — на гелии-8 (что свидетельствует о наличии такого уровня в ядре, помимо наглядной геометрии). (Кроме того, об этом свидетельствует отсутствие изотопа кислорода-10). В целом, на втором (после базового), энергетическом уровне — могут расположиться всего 4 нуклона, но они могут быть любыми. (Хотя при дальнейшем прибавлении нуклонов = у более тяжёлых ядер, на этом энергоуровне — очевидно, способны расположиться только нейтроны).



Рис. 132


Отметим, что полностью заполненный второй энергоуровень, в отличие от первого (= базового) — не прибавляет ядру стабильности, а наоборот, ускоряет распад, т. к. в соответствующих ядрах оказывается наиболее высока протоноизбыточность (углерод-8) или нейтроноизбыточность (водород-7). Энергии связи этих ядер, среди изотопов соответствующих элементов (углерода и водорода), естественно — также оказываются наиболее низки [18] (в отличие от 4He).

Далее: Ещё более высокий, третий по счёту, энергетический уровень — впервые наполовину заполняется, как уже отмечалось, в ядре углерода-12 (см. рис. 120). На то же расстояние, что и в углероде-12, нуклоны могут добавляться вплоть до неона-20. Поэтому полностью, третий энергоуровень (впервые) заполнен — у неона-20 (который, как и полагается ядру с полностью заполненными энергоуровнями, имеет замкнутую, правильную геометрическую форму, напоминающую кристалл (см. рис. 129)). На рис. 129 видно, что протоны, в боковых альфа-кластерах, в ядре неона-20 — не тождественны, по расположению, протонам в углероде-8 (см. рис. 132), т. е. протонам второго энергоуровня, а значит, находятся выше по энергии (= находятся на третьем энергоуровне). Четыре из нейтронов в неоне-20 — тоже располагаются выше нейтронов в водороде-7 (= нейтронов второго энергоуровня), из чего можно видеть, что они также принадлежат третьему энергоуровню. Всего, на третьем энергоуровне т. о. располагается 12 нуклонов (8 протонов и 4 нейтрона (см. рис. 129)).

Полностью заполненный 3-й энергоуровень — даёт стабильное ядро (неон-20), т. к. это ядро оказывается состоящим из (выгодных) альфа-кластеров, уравновешивающих друг друга. Соотношение протонов и нейтронов, при этом, получается 1 : 1, как и в альфа-частице (заполненный первый энергоуровень). Выгода ядра неона 20 — несколько снижается вследствие ближне-дальней симметрии, из-за одинаковости кластеров (альфа-кластеры) вблизи и вдали, что проявляется в меньшем энерговыделении при образовании этого ядра, по сравнению с кислородом-16 и магнием-24 (подробнее, это будет рассмотрено позже).

Итак, обобщим данные, по числу нуклонов на энергоуровнях: 1-й (базовый) энергоуровень — имеет 4 нуклона, 2-й — тоже 4 нуклона, 3-й — 12 нуклонов. Получившиеся числа — напоминают количество электронов на энергетических уровнях в атоме (хотя и умноженное на два): как известно, первые энергоуровни в атоме, называемые 1s, 2s и 2p, содержат, соответственно, 2, 2 и 6 электронов.

Перейти на страницу:

Похожие книги

Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука