Теперь применим требование трансляционной симметрии к альфа-частицам 4sp-энергоуровня: это приведёт к повороту этих альфа-частиц, как показано на рис. 145. При этом повороте, альфа-частицы связываются через нейтроны 3d-альфа-частиц, обычным способом. После поворота, они могут выгодно уравновесить нейтроны, добавляемые в положения, обозначенные на рис. 146. При повороте — также открываются ещё по четыре дополнительных места, для непосредственного связывания нейтронов (= связывания их с альфа-кластерами), см. рис. 147. Неудивительно, что криптон-84 — стабилен (хотя стабильность также объясняется ростом выгоды от избытка нейтронов (которых в 84
Kr — уже на 12 больше, чем протонов)), см. табл. 24. Этим (т. е. возможностью присоединения всех нейтронов непосредственно к альфа-кластерам, в условиях растущей выгоды от избытка нейтронов), можно объяснить также наибольшую энергию связи этого ядра, среди других изотопов криптона, см. табл. 25.Рис. 145
Рис. 146
Рис. 147
Стабильные изотопы и изотопы с периодом полураспада, превышающим время, прошедшее от Большого Взрыва (13,8x109
лет), криптонаПримечания:
Изотопы криптона, с наибольшей энергией связи, и смежные к ним
Рассмотрим строение и более тяжёлых изотопов данного элемента:
Ядро криптона-86 — показано на рис. 148. Видно, что протоны из невыгодной 3d-альфа-частицы — перешли на более высокий энергоуровень, эффективно связав два дополнительных нейтрона с образованием кластеров трития (и дополнительно уравновесив нейтроны, расположенные напротив), поэтому энергия связи в криптоне-86 — оказывается лишь немного меньше, чем в наиболее энерговыгодном криптоне-84 (табл. 25). Надо заметить, что к такому переходу — способны протоны только невыгодной 3d-альфа-частицы (т. е. пересекаемой плоскостью симметрии), и в меньшей степени (как увидим далее), протоны ближнего (вернее, правого) 3sp-альфа-кластера, и никакие другие протоны, т. к. иначе получалось бы расположение кластера трития на кластере трития, что запрещено (т. к. крайне энергетически невыгодно), и ни в одном ядре — не встречается.
В следующем изотопе, криптоне-88, энергия связи нуклонов значительно падает (табл. 25), т. к. дополнительные нейтроны теперь могут быть присоединены только в менее энерговыгодные положения, — без непосредственной связи с альфа-частицами / в выгодных кластерах, либо благодаря переходу протона из правой альфы 3sp-энергоуровня. Наилучшим из возможных расположений добавляемых нейтронов, представляется показанное на рис. 149.
Рис. 148
Рис. 149
Дальнейшее присоединение нейтронов — возможно только к нейтронам, не входящим в альфа-кластеры, и без возможности образования кластеров трития; это — ещё менее выгодно, поэтому после криптона-88, следуют изотопы, по отношению к которым, криптон-88 обладает повышенной стабильностью, см. табл. 26. Из табл. видно, что время жизни ядра криптона-88 — повышено, по сравнению с предыдущим, нечётным изотопом (криптон-87), в то время как для криптона-90, и дальнейших чётных изотопов — оно, в аналогичных случаях, понижено.
Периоды полураспада изотопов криптона от 87 до последнего известного чётного изотопа криптона
Вероятное строение последнего известного (чётного) изотопа криптона, криптона-100 (табл. 26), показано на рис. 150. На рис. видно, что все нейтроны в ядре связаны одинаковым образом: не более, чем в три шага, т. е. нейтрон, непосредственно связанный с альфа-частицей (1-й шаг), может связать ещё один нейтрон (2-й шаг), который может связать ещё нейтрон (3-й шаг), см. рис. 150.
Рис. 150
Возможность связи нейтронов в три шага, т. е. весьма косвенной связи — обусловлена большим числом протонов в ядре криптона, создающим достаточно сильное смещение кварковой плотности нейтронов (необходимое для связывания нейтронов через другие нейтроны). (В более лёгких ядрах, чем меньше протонов в ядре, тем, естественно, в меньшее число шагов могут быть присоединены нейтроны: например, в последнем изотопе водорода (7
H), нейтроны связаны, максимум, примерно в один шаг, и то слабо, а в последних изотопах гелия (9 и 10), нейтроны связаны — максимум, «в полтора» шага, а в последнем изотопе бериллия, бериллии-16 — примерно в два шага, но слабо (эти изотопы — крайне маложивущи, и распадаются с вылетом нейтронов, что уже рассматривалось ранее)).Далее: Обратимся теперь к строению ядра предыдущего чётного элемента, перед криптоном, — селена (табл. 22).