Читаем Мир вокруг нас полностью

Известно, что каждый из Z0- и W-бозонов — может существовать в трёх состояниях, различающихся проекцией спина на направление движения: эта проекция может принимать три значения: +1, –1 и 0. Вероятное наглядное представление этих состояний — можно видеть на рис. 242. Как видно из рис., при рассмотрении более подробной геометрии электрослабого поля, угадываются элементы геометрии тяжёлых атомных ядер (где альфа-частица 3d-энергоуровня, замыкает последний в ядре, и ведёт к снижению энергии связи у Zn (за Ni)), т. о. структура ядер — также может подтверждать геометрию слабого поля, как и ранее — мезонного.



Рис. 242


В отличие от Z0- и W-бозонов, спин кванта электромагнитного поля (фотона), может принимать только два значения: +1 и –1 (т. е. нет 0). Возможное наглядное представление фотона — см. на рис. 243. Согласно наглядной геометрии, фотон — должен быть плоской частицей (как и нейтрино), являющейся плоской, благодаря тому, что она лишена электрических осей (т. е. движений на этих осях), т. к. только при этом условии, фотон может (должен) всегда двигаться со скоростью света (и т. о. имеет наблюдаемую нулевую массу покоя). Состояние, геометрически равноценное фотону, но расположенное в проекции спина 0 — не могло бы двигаться со скоростью света, а значит и существовать (в плоском виде (или было бы нестабильным и обладающим массой покоя)), что можно понять уже из рассматривавшегося ранее, происхождения различий между магнитной и электрическими осями; это состояние — оказывается имеющим характеристики бозона Хиггса (и может быть интерпретировано в качестве бозона Хиггса и поля Хиггса).



Рис. 243


Далее — рассмотрим связь (= родственную природу) электромагнитного и слабого полей: Так, фотон — естественным образом, продолжает ряд Z0- и W-бозонов, представляя состояние, в котором движения на электрических осях — отсутствуют, см. рис. 244.



Рис. 244


Родственная связь квантов слабого и электромагнитного взаимодействия — также видна из механизма действия слабых полей, к рассмотрению которого и переходим:

Известно, что слабое взаимодействие — ответственно за распад нейтрона, заряженных пи-мезонов, и т. п., а также элементарных частиц второго и третьего поколений. Во всех случаях распада — испускается полу-«виртуальный» W+ или W бозон, который далее распадается на электрон и антинейтрино (или позитрон и нейтрино). Некоторые примеры таких реакций распада, т. е. обусловленных слабым взаимодействием — представлены на рис. 245. Как видно, W-бозоны, изображаемые в наглядном виде — способны выполнять функцию квантов, ответственных за эти (т. н. слабые) распады.



Рис. 245


Известно, что Z0-бозон, в отличие от W-бозонов — не участвует в слабых распадах. Т. е. реакции с изменением поколения элементарных частиц, с участием Z0-бозона — являются запрещёнными, см. рис. 246. Вылет Z0-бозона — переводит частицу саму в себя, и может изменять лишь спин, см. рис. 247. (Однако, обмен Z0-бозоном, как известно — необходим для объяснения возможности упругого столкновения нейтрино и электрона).



Рис. 246



Рис. 247


То же самое неучастие в распадах частиц с изменением поколения, свойственно и фотону, см. рис. 248. Неучастие фотона — можно понять из его аналогии с Z0-бозоном (фотон отличается от него лишь тем, что заряд 0 обусловлен не тем, что движения на электрических осях — взаимно скомпенсированы, но уничтожили друг друга (оставив частицу плоской)). Поэтому, по отношению к распадам частиц, Z0-бозон и фотон — ведут себя одинаково (при этом, Z0-бозон и фотон — были неразрывно связаны и неклассически (ненаглядно), где они возникают как суперпозиция = смешивание (ненаблюдаемых) исходных частиц, т. н. W0-бозона и B0-бозона, в процессе нарушения электрослабой симметрии (при концентрации энергии ниже порядка 100 ГэВ, и посредстве механизма Хиггса), см. рис. 249); наглядно же, общность фотона и Z0-бозона, можно видеть на рис. 244.



Рис. 248



Рис. 249 [61](примечание: W — слабый угол смешивания)


Итак, мы рассмотрели (наглядную) геометрию электрослабого взаимодействия (в т. ч. электромагнитного и слабого полей, в него входящих), в связи с разбором термоядерных реакций в звёздах. Термоядерные реакции, в т. ч. горение водорода, как уже говорилось, также связано с сильным (мезонным) взаимодействием, более фундаментальным проявлением которого, как известно — представляется глюонное поле. В связи с этим, далее может быть рассмотрен вопрос:

О геометрии сильных (глюонных) полей

Перейти на страницу:

Похожие книги

Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука
Причина времени
Причина времени

Если вместо вопроса "Что такое время и пространство?" мы спросим себя "В результате чего идет время и образуется пространство?", то у нас возникнет отношение к этим загадочным и неопределяемым универсальным категориям как к обычным явлениям природы, имеющим вполне реальные естественные источники. В книге дан краткий очерк истории формирования понятия о природе времени от античности до наших дней. Первой ключевой фигурой книги является И. Ньютон, который, разделив время и пространство на абсолютные и относительные, вывел свои знаменитые законы относительного движения. Его идею об отсутствии истинного времени в вещественном мире поддержал И. Кант, указав, что оно принадлежит познающему человеку, затем ее углубил своим интуитивизмом А. Бергсон; ее противоречие с фактами описательного естествознания XVIII-XIX вв. стимулировало исследование реального времени и неоднородного пространства мира естественных земных тел; наконец, она получила сильное подтверждение в теории относительности А. Эйнштейна.

Автор Неизвестeн

Физика / Философия / Экология