Как же белковая молекула справляется со своей сложной задачей? Оказалось, что тысячи атомов, образующие молекулу лизоцима, напоминают по своим очертаниям не совсем сжатый человеческий кулак. Этот приоткрытый «кулак» при первой возможности захватывает определенные молекулы (полисахариды), которые входят в состав бактерий. Захватив полисахарид, белковая молекула сжимает свой «кулак» и рвет добычу пополам. После этого молекула лизоцима восстанавливает свою пространственную структуру: «кулак» снова чуть приоткрыт и готов расправиться со следующим врагом.
Возьмем другой хорошо известный пример: молекулы дезоксирибонуклеиновой кислоты (ДНК), несущие в себе наследственную информацию, необходимую для биологического построения всех белков, в конечном итоге — всего живого. Такая молекула в миллион раз тяжелее молекулы водорода. С точки зрения пространственной архитектуры ДНК — это как бы микроскопическая модель веревочной лестницы. Две длинные «веревки» составлены из чередующихся в строгом порядке сахарных и фосфатных групп, а ступеньками служат две группы оснований. Всего таких оснований в молекуле ДНК присутствует четыре (аденин, гуанин, тимин и цитозин). «Лестница» сделана природой очень точно: «ступеньки» расположены строго на расстоянии 3,4 ангстрем друг от друга, ширина «лестницы» — 20 ангстрем, а длина колоссальна, порой 400 миллионов ангстрем. Молекула закручена жгутом, как винтовая лестница. При этом фосфатно-сахарные цепи, составляющие «веревки» лестницы, находятся снаружи, а «ступеньки» — пуриновые и пиримидиновые основания — в середине. Последовательность расположения четырех типов химических оснований «ступенек», являющихся нуклеотидами, и их определенная связь и повторяемость в длинной цепи как раз и есть шифр наследственности. Как же построились они в столь хитрую «лестницу», где каждая «ступенечка» и каждый кусочек «перильца» должны были стать на точно отведенное им место?
И относительно «простая» молекула лизоцима и более сложная молекула ДНК с ее запрограммированным кодом наследственной информации еще не жизнь, а лишь необычайно сложные и чрезвычайно специфичные по своему строению и химизму «кирпичики» живого. В неразрывном союзе с нуклеиновыми кислотами, носителями наследственных программ синтеза белков, и в особенности белков-ферментов, а также фосфорных соединений — «энергетических станций» белки обеспечивают существование и воспроизводство жизни. Можно сказать: белки и нуклеиновые кислоты — химический материал любого живого.
Простое легко сравнивать со сложным. Молекула нафталина включает 18 атомов, молекула белка — сотни тысяч и миллионы. Все ясно. Трудно сравнивать очень сложное с невероятно сложным. «Жизнь в полном смысле слова, — констатировал академик Г. М. Франк, — начинается тогда, когда из этого химического материала возникает особым образом организованная система — автономная, саморегулирующаяся и самовоспроизводящая.
Простейшая из таких „конструкций“ — живая клетка. Для нее, как известно, характерны рост и воспроизведение, т. е. размножение».
Попробуем все-таки сравнить сложное с невероятно сложным. В одной живой клетке в самом строгом порядке работает несколько сот ферментов — катализаторов белковой природы. Перечень непрерывно созидающихся в клетке химических соединений, наверное, не вошел бы в эту книгу — он содержит в себе несколько тысяч наименований. Причем все это находится в непрерывном движении и превращении (с разными скоростями), во время которых многие молекулы распадаются и воссоздаются вновь.
Электронные микроскопы, способные увеличить изображение в несколько миллионов раз, открыли исследователям поразительно сложную картину устройства клетки.
Ученые, конечно, и раньше знали, что клетка, элементарная живая система, — сложное образование. Оптические микроскопы, лучшие образцы которых позволяют увеличить изображение клетки в 1,5–2 тысячи раз, показали, что каждая клетка заполнена густой жидкостью — протоплазмой (точнее, цитоплазмой), в центре которой находится довольно крупное ядро. Окружена клетка тонкой оболочкой. Еще при более слабых микроскопах было подмечено деление клетки. Совершенная техника позволила установить, что это всегда начинается с деления ядра. При этом становятся четко видны нитевидные или палочковидные тельца. В различных клетках всегда свое, одинаковое количество таких телец. В ходе деления они удваиваются; в результате из одной клетки образуются две, и в ядрах каждой из них сохраняется количественно неизменный набор этих телец.