Да, да, самые настоящие космонавты, ведь наша планета, подобно огромному космическому кораблю, несется по своей орбите вокруг Солнца с головокружительной скоростью в 104 400 километров в час. Путь нашего странствования в просторах Вселенной необычайно сложен и постоянно нов. Планета-корабль не только движется вокруг Солнца, но вместе с ним (и всеми другими планетами солнечной системы) включена в огромный хоровод звездного движения Галактики. Звезды в пределах Галактики движутся довольно сложным образом. При этом Солнце со своей планетной семьей «летит» в космосе вокруг ядра Галактики со скоростью в 828 тысяч километров в час. Сама Галактика тоже движется по сложнейшему пути.
Таким образом, нас обдувают все время новые «ветры» гравитационных и электромагнитных бурь, встречаются новые облака микрометеоритов, пронизывают различные «ливни» потоков космических частиц. Вселенная постоянно готовит нам новые сюрпризы, ибо наша планета каждую секунду находится в другом месте, и если уж быть точными, то все наши связи с космосом хотя и чуть-чуть, но непрерывно меняются.
«Стоит ли обращать внимание на эти малости? — может возразить кто-нибудь из читателей. — Пусть наша Земля-путешественница чуть больше качнется и обмоется в попутных бурях и ливнях космических полей и потоков. Мы-то ведь этого не замечаем».
Оказывается, замечаем. В итальянском городе Флоренции, в том самом городе, где узником церкви провел несколько лет Галилей, работал крупный ученый Джорджио Пиккарди. Он был до своей смерти в 1972 году директором физико-химического института. Пиккарди — один из тех, кто, продолжая развивать общее научное направление, заложенное еще Вернадским и Чижевским, поставил изучение влияния на Землю меняющегося космического воздействия на уровень современного экспериментального исследования.
Началось все с мелочи. Д. Пиккарди, являясь большим авторитетом в области исследования воды, работал с коллоидными растворами (коллоид — особая взвесь очень мелких частиц в воде). Однажды он обратил внимание на то, что одна и та же простая реакция осаждения частичек на дно пробирки, если только эта реакция достаточно чувствительна, при прочих абсолютно равных условиях протекает в разное время с разной скоростью.
Но почему? Совершенно одинаковые коллоидные растворы, одинаковые пробирки стоят на одном и том же столе, в одной и той же лаборатории, при одной и той же температуре. Но сегодня частички оседают за одно количество минут, а через несколько дней — за другое. Отклонения, правда, чрезвычайно малы, но эта тончайшая разница есть, и она была подтверждена статистически после большого количества опытов.
Вот и опять природа поставила загадку. Точнее, две. Во-первых, зависимость реакции от времени, когда она проводится, должна свидетельствовать о том, что в окружающем пространстве постоянно действуют изменяющиеся силы, ранее не учитываемые. Но какие?
Во-вторых, вода, это замечательнейшее вещество, без которого не могла зародиться и не может существовать жизнь, способна реагировать на воздействие этих меняющихся во времени сил. Но как?
Здесь надо оговориться, что в последнее десятилетие биологи, а за ними и физики начали постепенно описывать точным языком науки высокую реактивность, изменчивость воды. В частности, в газетах и журналах много писали о влиянии магнитного поля на воду. Опыты советского профессора В. И. Классена показали, что вода почти сутки «помнит» воздействие на нее электромагнитного поля. «Омагниченная вода» меняет свое поверхностное натяжение, электропроводность и скорость протекающих в ней реакций. По-разному ведет себя вода талая, дистиллированная и дождевая. Хотя, казалось бы, это всего-навсего три сорта той же самой «очищенной» от химических примесей воды. Есть еще много капризов, а точнее, аномалий воды, и для них имеется очень мало объяснений.
Некоторую ясность вносит предложенная еще в 1933 году известным английским ученым Дж. Берналом структурная теория воды. Теперь существуют разные ее модификации, но суть берналовского предположения сводится к тому, что вода обладает определенной молекулярной геометрической структурой. Два атома водорода, соединенные с атомом кислорода, образуют молекулу, у которой по краям тетраэдральной формы расположены четыре водородные связи, позволяющие ей сцепляться с другими молекулами воды. Такое ажурное структурное построение создает эластичные «пружинящие» связи, делающие воду столь пластичной и подвижной.