Читаем Мивары: 25 лет создания искусственного интеллекта полностью

Тогда, слово – это вершина горы, а вся гора сама по себе и является контекстом. Если кто-то больше любит море или океан, то вместо гор можно использовать айсберги, хотя система гор все же, на наш взгляд, более адекватна предлагаемой модели. Итак, в процессе обучения человек "выращивает" эти горы у себя в голове, а общается потом внешне только словами, как бы перепрыгивая с вершины на вершину или связывая эти вершины огромными длинными виртуальными мостами. В процессе своего взросления и обучения человек "выращивает новые горы", создавая целые системы таких гор, но на основе общих здравых подходов и признаков. Высота каждой такой горы превышает, допустим, стоэтажный дом. Эти этажи образно соответствуют уровням абстракции в описаниях слов и языковых моделей. Для того чтобы восстановить в компьютере такую горную систему надо сделать ее полноразмерный математический макет. Такой макет можно делать, спускаясь этаж за этажом с вершины горы до ее основания и переходя на другую гору через долины… Современные методы семантической обработки позволяют сделать, условно говоря, только двух- трехэтажную по высоте модель такой горной смысловой языковой системы. Вот и получаем принципиальное ограничение: надо наращивать в высоту по уровням абстракции наши языковые модели, а мы остановились на втором этаже семантики и даже не собираемся двигаться далее. Спасибо онтологиям?

Вывод: для адекватной работы с естественным языком нужны более сложные модели, принципиально новые и на несколько порядков более сложные модели на основе многомерных баз данных с поддержкой самых разнообразных отношений. Возможно, что понадобится даже работа с бесконечными плоскостями описания сущностей и т.п. В настоящее время таким требованиям отвечает только миварный подход с многомерным информационным пространством и динамически изменяющейся структурой. Реализация языковых моделей на больших вычислительных кластерах (или ГРИД-системах) на основе миварного подхода должна приблизить нас к созданию автоматической системы, понимающей и разговаривающей с людьми на естественном языке. Напомним, что эта задача сравнима по сложности с созданием самого ИИ.

Возможно, что создание таких языковых моделей, вернее символьных моделей в миварном пространстве, позволит создать электронных двойников людей для вечной жизни, которые предсказаны многими фантастами. Впрочем, эти проблемы возникнут потом, а сейчас надо приступать к реализации построения символьных языковых моделей в миварном информационном пространстве, некоторым прототипом которых являются разработки Активных миварных интернет-энциклопедий, которые к описанию фактов в ВИКИ-педии будут добавлять новые отношения, связи, взаимодействия и т.д. Более подробно эти вопросы рассмотрены при описании миварной энциклопедии и миварной модели человеческого мышления.

Опять получаем, что именно миварный подход является принципиально новым и ключевым фундаментальным направлением для решения многих, практически всех описанных в этой работе, проблем в научной области ИИ.

<p>2.3. Представление знаний в ИИ. Семантические сети как альтернатива исчислению предикатов</p>

Существует Гипотеза о физической символьной системе Ньюэлла и Саймона, из которой следует, что интеллектуальная деятельность как человека, так и машины осуществляется на основе следующих средств [264, стр. 58]:

1. Символьные шаблоны, предназначенные для описания важнейших аспектов области определения задачи.

2. Операции с этими шаблонами, позволяющие генерировать потенциальные решения проблем.

3. Поиск с целью выбора решения из числа всех возможных.

Дж. Люгер утверждает, что эта гипотеза лежит в основе попыток создания умных машин и неявно различает понятия шаблонов, сформированных путем упорядочивания символов, и среды, в которой они реализованы. Если уровень интеллекта определяется исключительно структурой системы символов, то любая среда, которая успешно реализует правильные шаблоны и процессы, достигнет этого уровня интеллекта, независимо от того, составлена ли она из нейронов, логических цепей, или это просто механическая игрушка. Согласно тезису Черча о вычислимости по Тьюрингу, компьютеры способны осуществить любой эффективно описанный процесс обработки символьной информации. Получается, что правильно запрограммированный компьютер обладает интеллектом [264, стр. 58]. Мы поддерживаем гипотезу о физической системе и считаем, что на основе миварного подхода в скором времени получится реализовать достаточно сложную обработку информации, которую можно будет признать интеллектуальной.

Важно и то, что, по Дж. Люгеру, в этой гипотезе указаны главные проблемы исследований в области ИИ:

· представления знаний, т.е. определения структур, символов и операций, необходимых для интеллектуального решения задачи;

· поиска, т.е. разработки стратегий для эффективного и правильного поиска потенциальных решений, сгенерированных этими структурами и операциями.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии