Необходимо отметить, что не все ученые согласны с указанной гипотезой. Есть критики, например Виноград и Флорес, которые утверждают, что интеллект является наследственно биологическим и экзистенциальным и не может быть зафиксирован с помощью символов. Такая критика характерна для следующих направлений исследований в области ИИ: развитие нейронных сетей, генетических алгоритмов и агентно-ориентированных методов [264, стр. 58]. Отметим, что большая часть этих критиков проводит исследования и работает на рефлексивном до-интеллектуальном уровне исследований в области ИИ, согласно предложенной нами классификации, изложенной в этой работе (раздел 7.3). Видимо, именно из-за рефлексивности своего уровня эти ученые и не соглашаются с гипотезой о физической символьной системе. На втором уровне, уровне интеллектуальных исследований, преобладает мнение о верности указанной гипотезы.
Вернемся к представлению знаний. Как справедливо отмечает Дж. Люгер, задача любой схемы представления заключается в том, чтобы зафиксировать специфику области определения задачи и сделать эту информацию доступной для механизма решения проблемы. Язык представления должен позволять программисту выражать знания, необходимые для решения задачи. Абстрагирование, т.е. представление только той информации, которая необходима для достижения заданной цели, является необходимым средством управления сложными процессами. Конечные программы должны быть рациональными в вычислительном отношении. Выразительность и эффективность являются взаимосвязанными характеристиками оценки языков представления знаний. Многие достаточно выразительные средства представления в одних классах задачах совсем неэффективны в других. Разумный компромисс между эффективностью и выразительностью – сложная задача для разработчиков интеллектуальных систем. По существу, способ представления знания должен обеспечить естественную структуру выражения знания, позволяющую решить проблему. Способ представления должен сделать это знание доступным компьютеру и помочь программисту описать его структуру [264, стр. 58-59]. Учитывая наши выводы о неадекватности исчисления предикатов для решения многих задач ИИ, мы считаем, что разработка новых представлений в виде миварного информационного подхода является закономерным развитием теории ИИ в 21 веке.
Семантические сети как альтернатива исчислению предикатов. Особое внимание необходимо уделить передаче сложных семантических значений. У Дж. Люгера подчеркнуто, что во многих областях ИИ решение задачи требует использования высокоструктурированных взаимосвязанных знаний [264, стр. 63]. Для описания предмета реального мира необходимо не только перечислить его составные части, но и указать способ соединения и взаимодействия этих частей. Структурное представление предметов используется во многих задачах. Кроме того, семантические отношения необходимы для описания причинных связей между событиями. Да, в обоих этих случаях взаимосвязи и взаимоотношения могут быть описаны группой предикатов, но для программиста, имеющего дело со сложными понятиями и стремящегося дать устойчивое описание процессов в программе, необходимо некоторое высокоуровневое представление структуры процесса. Предикатное описание можно представить графически, использую для отображения предикатов, определяющих отношения, дуги или связи графа. Такое описание, называемое семантической сетью, является фундаментальной методикой представления семантического значения. Поскольку отношения явно выражены связями графа, алгоритм рассуждений о предметной области может строить соответствующие ассоциации просто следуя по связям, что значительно эффективнее, чем утомительный и исчерпывающий поиск в базе данных, содержащей описания на языке предикатов [264, стр. 64].
Как видим, принцип адекватности представления знаний здесь очень хорошо работает: при одинаковой выразительности семантических сетей и предикатов эффективность поиска явно лучше для семантических сетей с их явным описанием связей. Таким образом, нам остается согласиться с Дж. Люгером в том, что "теория графов эффективно и естественно выражает сложные семантические знания. Кроме того, она позволяет описывать структурную организацию базы знаний. Семантические сети – это достойная альтернатива исчислению предикатов" [264, стр. 64].