Читаем Мобилизация организма. На что способно наше тело в экстремальных условиях полностью

Российские ученые, на основании исследований, выделяют начальную фазу продолжительностью около двух недель, в течение которой происходит перестройка организма. Затем следует – до третьего месяца – фаза полной адаптации, после чего наблюдают частые нарушения сна, снижение активности членов экипажа и сужение сферы интересов. Становятся заметными повышенная раздражительность и утомляемость. Согласно результатам моих долгосрочных исследований во время длительного полета на борту МКС, у астронавтов наблюдаются удивительно сильные ритмические колебания температуры тела в течение суток. Надо исходить из того, что за счет смены дня и ночи на космической станции – а за сутки там солнце всходит и заходит 16 раз – сбивается циркадный ритм температуры тела. Однако по данным проводимого в настоящее время исследования, эти колебания не касаются организма в целом. Затрагивает ли данное положение биоритмические процессы на клеточном и молекулярном уровне, еще предстоит выяснить.

Все эти взятые вместе факторы ведут к тому, что длительный полет в космос даже после многолетней тренировки астронавтов остается чрезвычайно необычной, действительно экстремальной нагрузкой, далеко превосходящей все, что мы переживаем в земных условиях. Как, однако, различаются между собой четыре разных сценария космической миссии: в околоземном пространстве (МКС, полет на низкой орбите, сценарий 1), межпланетный космический полет (транзит, сценарий 2) или пребывание на Луне (сценарий 3) и, наконец, пребывание на Марсе (сценарий 4)? Для начала здесь надо учесть три важных параметра: удаленность от Земли, изменение силы тяжести (g) (микрогравитация, мкg или 10–6g на околоземной орбите, 0 g при межпланетном транзите, 0,16 g на Луне и 0,38 g на Марсе), а также продолжительность путешествия. Различные сценарии миссий неизбежно приводят с точки зрения здоровья, безопасности и благополучия экипажа к различным профилям нагрузок. Помимо этого, они решающим образом влияют на операционное планирование и на технологические решения вплоть до конструкции и оборудования соответствующих космических кораблей или космических станций, причем можно обоснованно исходить из того, что опасности и проблемы сохранения здоровья экипажа будут расти от сценария 1 к сценарию 4, причем очень существенно. Не последнюю роль играет также истинное время телекоммуникации при значительном удалении от Земли; общение в такой ситуации становится во все большей мере неэффективным. Для миссии на Марс это означает временную задержку по меньшей мере 40 минут. Сообщение с Земли до Марса дойдет за 20 минут, а для получения ответа, если он последует немедленно, потребуется еще 20 минут. Очевидно, что при такой задержке становится невозможным никакой осмысленный диалог между Марсом и наземным центром.

Кроме того, сценарии миссий значительно отличаются друг от друга в отношении возможности оказания помощи в случае, например, какого-то неотложного медицинского состояния. С МКС, находящейся на околоземной орбите, астронавта можно эвакуировать на Землю в течение 24 часов. Для того чтобы доставить больного с Луны, потребуется двое суток, и это в принципе возможно. При экстренной ситуации такого рода, возникшей во время транзита к Марсу или на самом Марсе, такая эвакуация исключена. Она при современном состоянии космических кораблей может в лучшем случае потребовать несколько месяцев. Соответственно, сценарии 3 и 4, по необходимости, требуют наивысшей автономности миссии. Это означает, что планирование должно предусматривать присутствие на борту врача, который, возможно, одновременно должен исполнять обязанности командира и доверенного лица для членов экипажа.

Риск от воздействия излучения значительно повышается при переходе от сценария 1 (пребывание на околоземной орбите) к сценариям 2, 3 и 4, если не принять соответствующих защитных мер, например строительства укрытий на Луне и Марсе в виде систем подземных туннелей. Но прежде чем думать о строительстве туннелей для нашей защиты от воздействия космического излучения, надо подумать и о другой, не менее важной задаче, о том, какие еще сохраняющие жизнь системы необходимы для гарантированного выживания в условиях космического пространства, – и это весьма длинный список!

Перейти на страницу:

Похожие книги

Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука