Теперь обратимся к моделям, которые помогают раскрыть преимущества многомодельного мышления. И представим в их контексте две теоремы: теорему Кондорсе о жюри присяжных и теорему о прогнозе разнообразия. Теорема Кондорсе о жюри присяжных
основана на модели, созданной для объяснения преимуществ принципа большинства. В соответствии с ней присяжные принимают бинарное решение о виновности или невиновности подсудимого. Каждый присяжный в основном выносит правильное решение. Чтобы применить эту теорему к совокупности моделей, а не членов жюри присяжных, мы интерпретируем принятие решения каждым присяжным как классификацию согласно той или иной модели. В качестве классов могут выступать действия (купить или продать) или прогнозы (победителем станет представитель демократической или республиканской партии). Далее теорема указывает на то, что конструирование множества моделей и применение принципа большинства обеспечит более высокий уровень точности, чем при использовании одной из моделей данного множества. Модель опирается на концепцию состояния мира – полное описание всей значимой информации. Для жюри присяжных состояние мира складывается из доказательств, представленных в суде. Для моделей, которые оценивают социальный вклад благотворительного проекта, оно может представлять команду проекта, организационную структуру, план проведения мероприятий и особенности проблемы или ситуации, которую должен решить проект.Теорема Кондорсе о жюри присяжных
Каждый из нечетного количества людей (моделей) классифицирует неизвестное состояние мира как истинное или ложное. Каждый человек (модель) классифицирует правильно с вероятностью вероятность того, что другой человек (модель) выполнит правильную классификацию, статистически независима от правильности классификации любого другого человека (модели).
Теорема Кондорсе о жюри присяжных:
большинство голосов обеспечивают правильную классификацию с более высокой вероятностью, чем любой отдельный человек (модель), а по мере увеличения количества членов жюри (моделей) точность решения, принятого большинством, приближается к 100 процентам[38].Эколог Ричард Левинс объясняет, как применить логику этой теоремы к многомодельному подходу: «Мы пытаемся решить одну и ту же задачу с помощью ряда альтернативных моделей с разными упрощениями, но общим биологическим предположением. В таком случае, если эти модели, несмотря на различие исходных предположений, приводят к аналогичным результатам, мы имеем то, что можно назвать устойчивой теоремой, относительно свободной от деталей модели. Следовательно, истина находится на пересечении независимых случаев лжи»[39]
. Обратите внимание, что здесь Левинс рассчитывает на единство классификации. Когда многие модели дают одну и ту же классификацию, наша уверенность должна повыситься.Следующая теорема, о прогнозе разнообразия, применима к моделям, которые делают численные прогнозы или оценки. Она количественно оценивает влияние точности моделей и их разнообразия на точность их среднего[40]
[41].Теорема о прогнозе разнообразия
Погрешность множества моделей = средняя погрешность модели – разнообразие прогнозов моделей
где Mi
– это прогноз i-й модели, – среднее значений моделей, а V – истинное значение.Теорема о прогнозе разнообразия
описывает математическое тождество. Нам не нужно его проверять – оно всегда справедливо. Вот пример. Две модели прогнозируют количество «Оскаров», которые присудят одному из фильмов. Одна модель предсказывает два «Оскара», а другая – восемь. Среднее значение прогнозов двух моделей (прогноз на основе множества моделей) равно пяти. Если на самом деле фильм получит четыре «Оскара», то квадратичная погрешность прогноза первой модели будет равна 4 (2 в квадрате), второй – 16 (4 в квадрате), а множества моделей – 1. Разнообразие прогностических моделей составляет 9, поскольку прогноз каждой модели отличается от среднего прогноза на 3. В таком случае теорему о прогнозе разнообразия можно записать так: 1 (погрешность множества моделей) = 10 (средняя погрешность моделей) – 9 (разнообразие прогностических моделей).