Читаем Models of the Mind полностью

Согласно этому определению, общий объем информации, содержащейся в одежде студента, составит 0,99 x 0,014 (от джинсов и футболки) + 0,01 x 6,64 (от костюма) = 0,081. Это можно считать средним количеством информации, которое мы получаем каждый день, видя наряд студента. Если бы студент решил носить джинсы 80 процентов времени, а костюм - 20 процентов, его код был бы другим. И среднее содержание информации было бы выше: 0,80 x log2(1/0,80) + 0,20 x log2(1/0,20) = 0,72.

Шеннон дал название средней скорости передачи информации в коде. Он назвал ее энтропией. Официально он объяснил это тем, что его определение информации связано с понятием энтропии в физике, где она служит мерой беспорядка. С другой стороны, Шеннон, как известно, утверждал - возможно, в шутку, - что ему посоветовали назвать свою новую меру энтропией, потому что "никто не понимает энтропию", и поэтому Шеннон, скорее всего, всегда будет выигрывать споры о своей теории.

Энтропия Шеннона отражает фундаментальный компромисс, присущий максимизации информации. Редкие вещи несут наибольшую информацию, поэтому вы хотите, чтобы их было как можно больше в вашем коде. Но чем чаще вы используете редкий символ, тем менее редким он становится. Эта борьба полностью определяет уравнение для энтропии: уменьшение вероятности символа приводит к увеличению логарифма его обратной величины - положительный вклад в информацию. Но затем это число умножается на ту же самую вероятность: это означает, что уменьшение вероятности символа приводит к уменьшению его вклада в информацию. Таким образом, чтобы максимизировать энтропию, мы должны сделать редкие символы настолько распространенными, насколько это возможно, но не более распространенными.

Использование Шенноном логарифма с основанием два делает единицей информации бит. Бит - это сокращение от двоичного разряда, и, хотя в работе Шеннона впервые встречается это слово, не он его придумал (Шеннон приписывает эту честь своему коллеге из Bell Labs Джону Тьюки). У бита как единицы информации есть полезная и интуитивно понятная интерпретация. В частности, среднее количество битов в символе равно количеству вопросов "да-нет", которые нужно задать, чтобы получить этот объем информации.

Например, попробуйте выяснить время года, в которое родился человек. Вы можете начать с вопроса: "Это переходное время года?". Если они ответят "да", вы можете спросить: "Сейчас весна?". Если они ответят "да", вы получите ответ; если "нет", у вас все равно будет ответ: осень. Если они ответили "нет" на первый вопрос, вы можете пойти противоположным путем - спросить, не родились ли они летом, и т. д. Независимо от ответа, чтобы получить его, нужно задать два вопроса "да" или "нет". Уравнение энтропии Шеннона согласуется с этим. Если предположить, что люди с одинаковой вероятностью рождаются в каждый сезон, то каждый из этих "символов" сезона будет использоваться в 25 процентах случаев. Таким образом, информация в каждом символе равна log2(1/0,25). Таким образом, среднее количество бит на символ равно двум - столько же, сколько и количество вопросов.

Часть разработки хорошей системы связи заключается в создании кода, который содержит много информации на один символ. Чтобы максимизировать среднюю информацию, которую предоставляет символ в коде, нам нужно максимизировать энтропию кода. Но, как мы видели, определение энтропии имеет внутреннее противоречие. Чтобы максимизировать ее, редкие символы должны быть нормой. Как лучше всего удовлетворить это, казалось бы, парадоксальное требование? На этот непростой вопрос, как оказалось, есть простой ответ. Чтобы максимизировать энтропию кода, каждый из его символов должен использоваться одинаково часто. У вас пять символов? Используйте каждый из них пятую часть времени. Сто символов? Вероятность использования каждого из них должна составлять 1/100 часть. Если сделать каждый символ одинаково вероятным, это уравновесит компромисс между редким и обычным общением.

Более того, чем больше символов в коде, тем лучше. Код с двумя символами, каждый из которых используется половину времени, имеет энтропию в один бит на символ (это имеет смысл в соответствии с нашим интуитивным определением бита: если представить, что один символ означает "да", а другой - "нет", то каждый символ отвечает на один вопрос "да" или "нет"). С другой стороны, код с 64 символами, каждый из которых используется одинаково, имеет энтропию шесть бит на символ.

Как бы ни был важен хороший код, кодирование - это только начало пути сообщения. В концепции связи Шеннона, после того как информация закодирована, ее еще нужно отправить по каналу к месту назначения. Именно здесь абстрактные цели передачи сообщений сталкиваются с физическими ограничениями материи и материалов.

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия