Дальнейшие исследования призваны уточнить и вопрос о генетических детерминантах описанных выше типов поведения. Генетические компоненты стрессоустойчивости ныне не вызывают сомнений (Беляев, 1979; Судаков, Душкин, Юматов, 1981). Наконец, вполне очевиден и тот факт, что между мотивационным конфликтом, непереносимым для данного типа нервной системы, и нарушением взаимодействия лимбических структур, ведущим к невротическим расстройствам высшей нервной деятельности, имеется ряд промежуточных нейрофизиологических и нейрохимических звеньев, трансформирующих психогенное воздействие в устойчивое патологическое состояние мозга. Поиск этих звеньев представляет сейчас наиболее важную и наименее разработанную область экспериментальной неврологии. Одним из таких промежуточных звеньев, по-видимому, является гипоксия мозга, обнаруженная при экспериментальном неврозе в лаборатории М. Г. Айрапетянца (Айрапетянц, Вейн, 1982). По данным М. Г. Айрапетянца и его сотрудников, невротизирующие воздействия ведут к снижению скорости локального мозгового кровотока и микроморфологическим сдвигам, характерным для гипоксического состояния. В этих условиях наблюдается компенсаторная активация системы перекисного окисления липидов, нарушающая структуру и функции биологических мембран. Введение антиоксидантов устраняет транзиторную гипертензию и гипертрофию сердца, предотвращает повышение активности цитохромоксидазы в новой коре и гиппокампе невротизированных крыс (данные Н. В. Гуляевой).
Таким образом, намечается следующая последовательность событий. Хроническое эмоциональное напряжение, порожденное мотивационным конфликтом, ведет к снижению скорости локального мозгового кровотока, вызывает гипоксическое состояние мозга, которое, в свою очередь, нарушает нормальное функционирование лимбических структур. Характер нарушения решающим образом зависит от индивидуальных особенностей взаимодействия этих структур, обусловленных врожденными факторами и периодом раннего онтогенеза. Эти особенности и определяют то направление, в котором будут развиваться симптомы невротического срыва.
Подчеркнем, что интерес к индивидуальным особенностям взаимодействия макроструктур головного мозга ни в коей мере не отменяет необходимость анализа нейрофизиологических основ индивидуальных различий на микроуровне процессов возбуждения и торможения нервных клеток. Примером такого подхода может служить исследование Л. А. Преображенской (1981) электрической активности гиппокампа при выработке условнорефлекторного переключения у собак. У четырех собак сначала вырабатывали инструментальный пищевой рефлекс надавливания правой передней лапой на педаль в ответ на звуковой условный сигнал (тон). Затем тот же условный сигнал, подаваемый на фоне действия сигнала-переключателя (шум и мелькание лопастей вентилятора), начинали подкреплять болевым раздражением задней лапы электрическим током. Это раздражение собака могла прервать или полностью предотвратить подъемом левой передней лапы до определенного уровня.
Металлические электроды вживляли под нембуталовым наркозом в дорзальный отдел гиппокампа по координатам атласа Лима. Электрическую активность гиппокампа считали ритмической, если регулярные колебания продолжались не менее 1 с. На записи электрогиппокампограммы подсчитывали число регулярных колебаний в последовательных односекундных отрезках, сверяя это число с колебаниями, выделенными анализатором. В каждой ситуации (оборонительной и пищевой) производили не менее 30 измерений, вычисляли среднее значение частоты колебаний и его ошибку.
На рис. 27 представлены гистограммы распределения каждой частоты ритмической активности гиппокампа у четырех собак в пищевой и оборонительной ситуациях опытов с переключением условных рефлексов. Можно видеть, что при переходе от пищевой ситуации к оборонительной происходит учащение гиппокампального тета-ритма у всех собак: гистограммы смещаются вправо. Вместе с тем каждое животное характеризуется своим диапазоном изменений частотного спектра регулярной активности, и этот диапазон коррелирует с динамикой выработки переключения условных рефлексов (рис. 28). У собак с более частым тета-ритмом выработка переключения произошла сравнительно быстро и легко: они стали реагировать на условный сигнал в соответствии с наличной ситуацией после 5–6 опытов (
Рис. 27.
Гистограммы распределения частот электрической активности гиппокампа у четырех собак в пищевой и оборонительной ситуациях опытов с переключением условных рефлексов