Преимущество всего этого в том, что здесь один рецептор с разнообразием два (а именно, 0 или 1) способен уменьшить, в два раза размерность решения проблемы соотнесения любой из 26 букв. Мы, таким образом, получили 13 разнообразных вариантов за счет двух. Может показаться, что пользы в этом мало, однако это весьма важно. Вообще, двоичный классификатор (рецептор 0 или 1) при эффективном использовании в два раза уменьшает неопределенность, с которой он встретился. Все проблемы, относятся ли они к распознаванию, классификации или к самому решению, — проблемы неопределенности. Если нет неопределенности в отношении промышленной ситуации, то руководителю не нужно принимать решения. Если нет неопределенности в начертании буквы, то мы можем ее прочесть. Ситуациями с большей неопределенностью трудно управлять именно потому, что мераих разнообразия и есть мера их неопределенности.
Именно поэтому так важен трюк, который мы только что продемонстрировали. Как бы ни была велика проблема, ее разнообразие, в принципе, может быть уменьшено в два раза с помощью одного решающего элемента. Приведем другой пример. Вы ищете кого-либо в танцевальном зале, где танцуют 500 пар. Разнообразие тогда составляет 1000; фактор неопределенности составляет 1: 1000, а вероятность правильного решения при случайной выборке равна 0, 001. Таков масштаб проблемы. Но если вы знаете, ищете вы мужчину или женщину, то масштаб проблемы сразу уменьшается в два раза.
Вернемся теперь к проблеме чтения всего алфавита. Мы показали, что 13 более светлых букв могут отличаться от 13 более темных букв с помощью одного избирательного рецептора, способного определять среднюю границу их серости. Взяв теперь пачку карточек из 13 букв и второй рецептор, получим возможность отделить 6 одних букв от 7 других, используя такое же устройство — фотоэлемент, порог чувствительности которого соответствовал бы середине между самыми темными и самыми светлыми буквами. Конечно, такой же рецептор можно использовать для сортировки и второй пачки букв, когда до них дойдет очередь. Для сортировки шести (или семи) карточек используем третий рецептор, который сведет проблему к двум новым половинам (из 3 или 4 карточек). С помощью четвертого рецептора мы сможем разобраться и с этими пачками, поскольку знаем, что каждая буква уже проверена и является одной из двух. Тогда пятый рецептор различит и эти оставшиеся две буквы. Неопределенность, с которой мы начали — определить любую из 26 букв, исчезла: теперь мы знаем, какая буква какая, и достигнуто это использованием пяти фотоэлементов.
Таким образом, в принципе необходимо только 5 рецепторов, чтобы прочесть буквы английского алфавита, поскольку их достаточно, чтобы различать 25 = 32 буквы, полагая, что у каждой буквы свое соотношение белого с черным, своя мера серости, которая уникальна. В общем, n является минимальным числом рецепторов, способных различать 2 n возможностей. Заметьте, что таким образом по мере увеличения числа возможностей получается впечатляющая экономия числа рецепторов. Десять рецепторов могут различать 210 = 1024 буквы или чего-то другого. Сорок рецепторов смогут различать 240, что больше миллиона миллионов. Такое число — чистая теория. Мы должны заметить, что на практике такое множество букв (или состояний, или картин нашего мира) не может быть точно различимым. Частично так происходит, поскольку пороги различия их серости становятся слишком близкими друг другу, чтобы использовать практически полезный инструмент их различения, а частично из-за того, что буквы невозможно напечатать с такой аккуратностью. Другими словами, нечеткость их контуров дает такую меру серости для одной буквы, которая точно соответствует тому, что есть у другой, которую нужно от нее отличить. Так мы подошли к проблеме разнообразия в пропускной способности канала связи как отличающейся от разнообразия на входе.