Читаем Мозг Фирмы полностью

Большинство систем управления, которые интересуют кибернетиков, представляют собой смесь систем аналогового и дискретного счета. Важность этого утверждения в том, что в любом из этих случаев по-прежнему разнообразие их состояний можно измерять через двоичное решение. Неопределенность границ — в конце концов другого сорта неясность, которая рано или поздно будет решена. Теперь выяснилось, что элементарное решение как выбор между "да" и "нет", между 0 и 1 является исходным в теории управления. Оно называется двоичной единицей, или сокращенно битом. В дальнейшем будем широко пользоваться этим термином, так что не ошибетесь, полагая, что биты — это понятия, которым пользуются только специалисты по вычислительной технике, а для всех остальных они интереса не представляют. Измеряя масштабы проблем, при обсуждении их сложности удобно использовать биты как единицу измерения, поскольку они для этого и предназначены. Если ситуация характеризуется 1024 разнообразными состояниями, то единственное достоинство в знании этого числа заключается в возможности сказать, что нужно принять 10 решений, чтобы рассеять неопределенность, заключенную в этом разнообразии, поскольку 1024 = 210. Это просто означает, что для получения одного-единственного ответа мы можем разделять проблему пополам 10 раз. Другими словами, бит является мерой экспоненты в нашей формуле 2n; он точно равен числу n .

Такова таким образом природа фундаментального механизма, позволяющего нам как жителям этого мира или как руководителям предприятий справляться с огромным разнообразием, встречающимся в жизни. Мы можем распознать или выбрать, или принять решение на основе триллиона вариантов, используя только 40 хорошо продуманных рецепторов или классификаторов. Даже если мы неэффективно разрабатываем свою систему, планируем ее процедуры, результат весьма впечатляет. Мы также открыли меру, которую уместно использовать, размышляя о проблемах управления и при разработке инструментов управления. Тогда что же произойдет с законом о требуемом разнообразии? Ответ таков: мы можем создать генератор разнообразия в механизме управления, подобный тому, которым располагает природа для роста разнообразия как средства преодоления проблем управления.

Пока все хорошо, но теперь природа берет свой реванш. Если мы, управляющие, можем создавать очень большие множества из небольшого числа элементов, то то же может делать и природа. Посмотрите: мы заявляем, что нам необходимо 5 рецепторов для чтения 26 букв латинского алфавита. Представим себе тогда пять лампочек, которые могут зажигаться в любом порядке. (Первая горит, остальные выключены, две горят, три не горят и т. д.) Тот факт, что 5 рецепторов могут различать 26 букв, означает, что эти 5 лампочек могут создавать 32 комбинации, и, конечно, если мы хотим представить себе, что означает наше окружение, то должны понимать то, чем оно располагает. Тогда если ваш внешний мир располагает всего 40 лампочками, то из предыдущегомы знаем, что можем встретиться с триллионом разных состояний. Верно, что нам, чтобы разобраться в них, необходимо всего 40 информационных попыток — ситуация совершенно симметричная. Но мир состоит не из сорока лампочек, а из миллиардов вещей и событий.

Если вас фактически интересует n вещей и событий, каждое из которых в данный момент либо "вспыхнуло", либо нет, то такой мир предстает перед нами в одном из 2 n возможных состояний n вещей. Поняв, сколь стремительно нарастает такая функция, начинаешь осознавать, что создается весьма незавидная перспектива. Но если мы хорошо умеем создавать управляющие механизмы, то такая перспектива нас не очень пугает, поскольку это означает, что необходимо такое число рецепторов, сколько насчитывается событий или вещей. Эти n рецепторов создадут 2 n разнообразий на сенсориуме. Моторная система сведет 2n состояний к возможным конкретным действиям. Мы, таким образом, сохранили требуемое разнообразие. Однако вспомним приведенный ранее аргумент: если вещей или событий больше, чем рецепторов, которыеих распознают и сообщают о них системе управления, то мы не можем всеих определить. И здесь мы вновь сталкиваемся с законом о требуемом разнообразии. В любой данный момент нас будет касаться лишь то, о чем мы знаем, и не больше, а его разнообразие равно n . Разнообразие n создает 2n состояний, но наши процедуры выбора позволяют нам с этим справиться с помощью n процедур распознавания или n процедур выбора, т. е. именно с темих числом, которым мы располагали по определению. Но беда начинается, когда необходимо предпринимать какие-то действия.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес