Увы, секретность – проклятие для науки. За годы, прошедшие после смерти Леонардо, наука превратилась в совместное предприятие, которое может успешно существовать, только если его члены свободно делятся своими открытиями друг с другом. Многие историки науки осуждают Леонардо за сокрытие им своих знаний в те времена, когда они могли бы сильно повлиять на последующее развитие этих областей. Чтобы не быть слишком суровыми по отношению к нашему энциклопедисту эпохи Возрождения, вспомним, что идеи открытости и совместного использования знаний во времена Леонардо были непопулярны.
Поскольку его заметки не были опубликованы, Леонардо не поразил воображение пришедших после него ученых и не возбудил интерес историков следующих эпох. Кроме того, и искусствоведы, и публика привыкли считать его выдающимся художником. Пропасть же между первоклассным искусством и первоклассной наукой казалась столь глубокой, что признать вклад Леонардо еще и в области науки – это было бы уже слишком. И все же история умеет восстанавливать справедливость, и я докажу, что именно Леонардо достоин называться первым Ученым.
Для начала надо перечислить научные гипотезы Леонардо.
Обычно ученые считают физику «королевой наук», потому что она лежит в основе всех других естественных дисциплин. Леонардо сделал несколько поразительных открытий в этой основополагающей области. Из трех законов Ньютона Леонардо открыл первый и третий. Ньютон сформулировал свой первый закон в 1687 году так:
Леонардо писал: «Ни одна неодушевленная вещь не движется сама собою, но движение ее производится другими»; еще в другом месте: «Всякое движущееся тело движется постоянно, пока импульс силы его движителя в нем сохраняется». Его объяснения со временем стали бы называться законами Леонардо, если бы Ньютон не переформулировал их на языке математики.
Леонардо также выразил идею и третьего закона: сила действия равна силе противодействия. Он писал: «С такой же силой действует предмет на воздух, с какой и воздух на предмет. Посмотри на крылья, которые, ударяясь о воздух, поддерживают тяжелого орла в тончайшей воздушной выси». Аналогично он уловил и основной принцип полета, прядя к заключению: чтобы понять, как крылья держат птиц в высоте, надо понять действие воздушных потоков на крыло.
Леонардо в своих записных книжках описал в словах или выразил в рисунках поразительно много важнейших законов физики задолго до того, как была заложена необходимая основа для их открытия. Он интуитивно предсказал предложенный Эванджелистой Торричелли в 1643 году закон, описывающий факторы, влияющие на скорость жидкости, вытекающей из отверстия. Торричелли выразил закон в изящной формуле, учитывающей вклад всех переменных. Примерно двумя столетиями ранее Леонардо, наблюдая за текущей водой, пришел к точно таким же выводам, использую только слова и рисунки.
Подробно изучая условия, необходимые для полета, Леонардо понял фундаментальную основу закона, который в 1738 году опишет математик Даниил Бернулли. Суть этого закона заключается в том, что скорость потока воздуха над поверхностью крыла выше, чем скорость воздуха под крылом, и таким образом возникает перепад давлений. Этот простой аэродинамический принцип обеспечивает подъемную силу, необходимую для полета и позволяющую держаться в воздухе тяжелым авиалайнерам. Более чем за 200 лет до Бернулли Леонардо открыл этот важный закон, не прибегая к помощи высшей математики.
Существует хорошо известный феномен изменения тона паровозного свистка при приближении и последующем удалении от наблюдателя. В 1840 году немецкий математик Кристиан Доплер объяснил на точном математическом языке, что этот феномен возникает из-за того, что при движении источника звука расходящиеся звуковые волны образуют не окружность, а овал. В его честь это открытие получило название «эффект Доплера». Леонардо наблюдал вытягивание окружностей, которые образуют волны от камешка, брошенного в ручей. Сведения о волнах в ручье он распространил и на звуковые волны и таким образом описал и проиллюстрировал звуковое явление, которое Доплер обоснует с помощью уравнений 300 лет спустя.
Открытия Леонардо тем более поразительны, что основаны на интуитивном понимании сложных физических идей, без опоры на глубокие математические знания.
Когда Декарт в середине XVII века изобрел метод аналитической геометрии, позволяющий графически представить алгебраические выражения, он не знал о гении-самоучке, который на 150 лет раньше, работая практически в одиночку, получал потрясающие результаты, превращая абстрактные математические формулы в изображения.