Читаем Мозг – повелитель времени полностью

Теперь давайте рассмотрим тот же сценарий, но в контексте второго принципа Эйнштейна — принципа постоянства скорости света. Пусть ваш поезд движется с невообразимой скоростью 100 000 км/с (треть скорости света), и вы выпускаете из пистолета не пулю, а пучок лазерных лучей. Фронт света лазера удаляется от вас со скоростью 300 000 км/с (примерно скорость света, обозначим ее через c). Резонно предположить, что раз вы видите движение светового пучка со скоростью 300 000 км/с, я с платформы должен определить, что скорость движения фронта света составляет 400 000 км/с (скорость поезда плюс скорость света, 1,33c). Однако в таком случае нарушается принцип постоянства скорости света, которая должна быть одинаковой для всех и равняться значению c вне зависимости от скорости движения остальных тел (кроме того, здесь нарушается соответствующий вывод теории относительности, заключающийся в том, что ничто не может двигаться быстрее скорости света). В результате для вас и для меня свет лазера будет двигаться с одной и той же скоростью.

На интуитивном уровне это совершенно непонятно. Вы легко определите, что через секунду фронт света окажется за 300 000 км от поезда. Поскольку я тоже вижу, что свет движется с той же скоростью, я могу сказать, что через секунду фронт света окажется в 300 000 км от моей платформы, а поскольку мне известно, что поезд идет со скоростью 100 000 км/с, он продвинется на 100 000 км. В результате для меня расстояние между поездом и фронтом света составит 300 000–100 000 = 200 000 км. Но вы только что подсчитали, что фронт света удалился от вас на 300 000 км! Здесь что-то не так. Попросту говоря, если скорость света абсолютна, то пространство и время — нет! Наши вычисления не сходятся по той причине, что мы оцениваем пространство и время по-разному.

Для Эйнштейна 1905 г. был «годом чудес»: он все еще работал в патентном бюро в Берне, но опубликовал четыре чрезвычайно важные статьи. В статье, посвященной специальной теории относительности, он вывел серию уравнений, описывающих растяжение времени (и сокращение пространства) в зависимости от скорости. Интересно, что эти уравнения называют преобразованиями Лоренца, поскольку впервые их привел в своих работах голландский физик Хендрик Лоренц. Однако Лоренц не выявил всех следствий из этих уравнений и не понял, что их можно вывести из двух упомянутых выше принципов.

Стоит взглянуть на сокращенную версию преобразований Лоренца для времени195, поскольку это одно из важнейших уравнений в истории изучения времени. Это всего-навсего алгебраическое уравнение, которое связывает время на ваших часах, когда вы перемещаетесь в поезде (tвы), со временем на моих часах, когда я стою на платформе (tя), при условии, что мы оба запустили часы ровно в тот момент, когда вы проносились мимо меня. В этом уравнении v — скорость нашего движения относительно друг друга, а c — скорость света:



Поскольку c — гигантское число по сравнению с нашими привычными скоростями, параметр v2/c2 близок к нулю, и знаменатель близок к √1, т. е. к единице. Таким образом, значения tвы и tя приблизительно равны. Так обычно и бывает в жизни: все наши часы тикают с одинаковой скоростью и действуют синхронно, даже когда мы двигаемся, поскольку двигаемся мы с небольшими скоростями (по сравнению со скоростью света). Однако при скоростях, приближающихся к скорости света, часы будут идти по-разному.

Возвратимся к примеру, когда вы путешествуете в поезде, движущемся со скоростью, равной одной трети скорости света. Через секунду, отмеренную вашими часами (tвы = 1 с), мои часы покажут другое время (tя = 1,06 с). Разница небольшая, но если бы вы двигались со скоростью ближе к скорости света, скажем, v = 0,999c, за то время пока ваши часы отмерили бы год (tвы = 1 год), мои отмерили бы почти 22 года. В такой ситуации время для вас замедлилось: я постарел на 22 года, а вы — лишь на год196.

Один из первых экспериментов по демонстрации замедления времени заключался в сравнении показаний атомных часов, находящихся на летящем самолете и на земле. Часы провели несколько сотен часов в самолетах, двигавшихся на восток (направление полета имеет значение из-за вращения Земли). Как и предсказывала специальная теория относительности, путешествовавшие часы отставали (на десятки миллиардных долей секунды) от атомных часов, находившихся дома, в военно-морской обсерватории в Вашингтоне197.

Этот и другие эксперименты подтвердили, что время — не абсолютная величина. Ньютон ошибался, утверждая что время «протекает само по себе, без всякого отношения к чему-либо внешнему».

ИСЧЕЗНОВЕНИЕ ОДНОВРЕМЕННОСТИ

Часовое время всегда измеряют по изменению какого-то показателя — будь то число колебаний маятника или концентрация белка Period в супрахиазматических ядрах, а изменение — явление локальное. И нам легко понять, что скорость изменения тех или иных событий может быть подвержена влиянию локального окружения.

Перейти на страницу:

Все книги серии Большая наука

Похожие книги