Как и всегда в психологии, нужен был метод, чтобы экспериментально доказать наблюдения Гальтона. Я обратился к своим студентам Эдду Хаббарду и Шаи Азулэй за помощью. Сперва мы решили пронаблюдать хорошо известный эффект «чисел на расстоянии», наблюдаемый у обычных людей. (Когнитивные психологи изучили все возможные вариации данного эффекта на несчастных студентах-волонтёрах, но его отношение к пространственно-числовой синестезии не было обнаружено, пока мы не присоединились.) Спросите кого угодно, какое из двух чисел больше, 5 или 7? 12 или 50? Любой, кто учился в школе, даст вам правильный ответ. Самое интересное наступает, когда вы засекаете время, которое занимает ответ. Эта задержка между показом пары чисел и словесным ответом является временем реакции. Оказывается, чем больше разница чисел, тем короче время реакции, и наоборот, чем ближе расположены два числа, тем больше времени требуется на ответ. Это наводит на мысль, что в мозге числа представлены в виде своего рода внутреннего числового ряда, с которым вы «зрительно» консультируетесь, чтобы определить, какая величина больше. Числа, которые отстоят друг от друга дальше, могут быть легче выхвачены глазом, в то время как числа, которые расположены ближе друг к другу, требуют более внимательного рассмотрения, которое занимает несколько миллисекунд.
Мы поняли, что могли бы использовать это, чтобы убедиться, действительно ли существует феномен извилистой числовой линии. Мы могли бы попросить пространственно-числового синестета сравнить пары чисел и проследить, совпадает время реакции с реальной математической дистанцией между числами или будет отражать уникальную геометрию внутренней числовой линии синестета. В 2001 году нам удалось привлечь к сотрудничеству австрийскую студентку по имени Петра, которая была пространственно-числовым синестетом. Её чрезвычайно извилистая линия чисел была так загнута, что, например, число 21 было пространственно ближе к 36, чем к 18. Эд и я были очень взволнованы. С тех пор как Гальтон открыл пространственно-числовой феномен в 1867 году, никто его не исследовал. Так что любая новая информация будет очень ценной. Наконец-то дело сдвинется с мёртвой точки.
Мы подключили Петру к аппарату, который измерял время её реакции на вопросы: какое число больше 36 или 38? 36 или 23? и т. п. Как часто бывает в науке, результат не был определённо ясным. Казалось, что время реакции Петры зависит частично от числового расстояния, а частично от пространственного. Результат был не таким убедительным, на какой мы надеялись, но это дало возможность предположить, что её числовая линия не была представлена слева направо и линейно, как в обычном мозге. Некоторые числовые образы в её мозге были определённо спутаны.
Мы опубликовали наше открытие в 2003 году, в томе, посвящённом синестезии, и это поспособствовало многим дальнейшим исследованиям. Результаты были разнородными, но наконец-то мы возродили интерес к давней проблеме, которая была полностью проигнорирована учёными, и мы искали пути объективных исследований.
Шаи Азулэй и я провели второй эксперимент с двумя новыми пространственно-числовыми синестетами, это было проделано для доказательства той же точки зрения. В тот момент мы проводили тест на память. Мы просили каждого синестета запомнить набор из девяти чисел (например, 13,6, 8,18, 22,10,15,2,24), расположенных произвольно на различных участках экрана. Эксперимент включал в себя два условия. В условии А девять произвольных чисел были разбросаны на двухмерном экране. В условии Б каждое число было расположено там, где оно «должно было» располагаться на извилистой линии каждого синестета, спроектированной на экране. (Вначале мы опросили каждого синестета, чтобы выяснить геометрию персональной числовой линии, и определили, какие числа расположены ближе друг к другу в рамках его идиосинкразической системы координат). В каждом условии испытуемых просили посмотреть на экран в течение 30 секунд, чтобы запомнить числа. Через несколько минут их просто просили воспроизвести все увиденные цифры, которые они могли вспомнить. Результат был ошеломляющий: наиболее точно числа были воспроизведены при условии Б. Мы в очередной раз убедились, что эти персональные числовые линии действительно реальны. Если бы они не существовали или если бы порядок их следования менялся с течением времени, какое бы имело значение, как эти числа расположены? Размещение чисел там, где они «должны быть» на индивидуальной числовой линейке каждого участника, поспособствовало запоминанию чисел такое вы не сможете увидеть среди обычных людей.