При экспоненте возрастания +0,18 удвоение массы тела сопровождается весьма скромным – всего 14 % – ростом числа двигательных нейронов лицевого нерва, а уменьшение массы тела вдвое сопровождалось уменьшением числа нейронов всего на 12 %. Интересно, что эти числовые данные совпадают с данными, полученными в замечательной работе, выполненной Виктором Гамбургером и другими в семидесятые годы[156]
. В ней было продемонстрировано, как число двигательных нейронов приспосабливается в процессе развития, путем дифференцированной клеточной смерти и выживания, к размеру пула мышечных волокон, которые эти нервные клетки иннервируют. После экспериментального удвоения закладки мышц с помощью подсаживания в развивающиеся эмбрионы птиц и земноводных почек конечностей или уменьшения вдвое области иннервируемых мышц путем подсадки двух нервных окончаний в одну мышечную закладку эти ученые обнаружили, что в первом случае вместо удвоения числа двигательных нейронов спинного мозга их число увеличивалось лишь на 15–20 %, а при уменьшении зоны иннервации вдвое происходило уменьшение числа двигательных нейронов всего лишь на 8 %. Значит, какая-то количественная зависимость между числом двигательных нейронов и мышечной массой все же существует, так как большее число нейронов выживает, когда увеличивается число мышечных волокон, подлежащих иннервации, и меньше нейронов остается, когда уменьшается пул иннервируемых мышц[157]. Но оставалось определить, почему зависимость не была линейной: почему экспериментальное удвоение мышечного поля не вело к соответствующему удвоению числа двигательных нейронов, но лишь к увеличению их числа на 15–20 %? Наши данные о такой же количественной зависимости между числом лицевых двигательных нейронов и управляемой ими мышечной массой у взрослых приматов позволяли предположить, что существует фундаментальный конкурентный механизм за выживание, который связывает число двигательных нейронов с массой иннервируемых мышечных волокон, что приводит к нелинейной числовой зависимости, определяемой степенным законом с малым показателем степени, как внутри каждого вида, так и при сравнении разных видов. Более того, если один и тот же конкурентный механизм работает и на уровне индивидуального развития, и на уровне эволюции, подгоняя число нейронов к мышечной массе, то это означает, что большее по размерам тело не требует большего числа двигательных нейронов, а лишь допускает выживание большего числа нейронов[158]. Возникает совершенно новое представление, согласно которому сначала формируется центральная нервная система, число нейронов в которой детерминировано генетически и пропорционально длине тела, но затем число нейронов может уменьшиться в зависимости от реальной мышечной массы и сенсорных мишеней, доступных для иннервации.Но что можно сказать о других млекопитающих, не принадлежащих к отряду приматов? Несмотря на то что мы пока не располагаем данными о числе нейронов в спинном мозге таких животных, мы уже знаем, что число нейронов в остальных отделах головного мозга приматов возрастает линейно с числом нейронов спинного мозга[159]
. То есть если число нейронов в спинном мозге увеличивается в десять раз, то в десять раз увеличивается и число нейронов в остальных отделах головного мозга приматов. Эта линейность поддерживает идею (1) о том, что и спинной мозг, и остальные отделы головного мозга содержат нейроны, которые управляют функциями организма, и (2) что сходные механизмы управляют размещением нейронов в этих структурах, по крайней мере у приматов. Мы можем рассмотреть возрастание числа нейронов в остальных отделах головного мозга у большего числа животных, не принадлежащих к отряду приматов, чтобы понять, как это число соотносится с массой тела.